Code: 9A02305

B.Tech II Year I Semester (R09/R13) Regular \& Supplementary Examinations December 2015 ELECTRICAL CIRCUITS

(Common to EEE, EIE, E.Con.E, ECE \& ECC)
Time: 3 hours
Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 (a) What is the difference between an ideal source and a practical source? Draw the relevant characteristics of the above sources.
(b) A current wave form flowing through an inductor of 1 mH is shown below. Obtain and sketch the waveform of the voltage across the inductor.

2 (a) Explain the node analysis used in the circuit analysis.
(b) For the network shown below figure, determine the node voltages V_{1} and V_{2}. Determine the power dissipated in each resistance.

3 (a) Explain concept of power and power factor of an RL circuit.
(b) Consider the RL series circuit with an impedance angle of 50 degrees at a frequency of 60 Hz at what frequency the magnitude of the impedance will be twice the magnitude of the impedance at 60 Hz .

4 (a) Write the properties and applications of parallel resonant circuit.
(b) A coil is connected in series with a variable capacitor across $V(t)=1000$. The capacitor is varied and the current is maximum when $\mathrm{C}=10$ micro farads. When $\mathrm{C}=12.5$ micro farads the current is 0.707 times the maximum value. Find L, R, and Q of the coil.

5 (a) Derive the expression for equivalent inductance of two coils connecting in series opposing.
(b) An air cored solenoid has a length of 80 cm and a diameter of 2 cm . Calculate its inductance if it has 800 turns. Also, calculate the energy stored in the inductor if the current rises from 0 to 10 A . Calculate self induced emf in the solenoid.

Code: 9A02305

6 Using nodal analysis find current through all the elements in the circuit shown below and also find power dissipated by all the resistors.

7 (a) Find the condition for maximum power transfer to the load for A.C network, when load impedance is variable.
(b) Determine current through (10-j10) Ω impedance using Milliman's theorem.

8 (a) State and explain superposition theorem.
(b) Prove Tellegen's theorem for the network shown below figure.

