B.Tech II Year I Semester (R09) Supplementary Examinations December 2015

PROBABILITY THEORY \& STOCHASTIC PROCESSES
 (Common to EIE, E.Con.E and ECE)

Time: 3 hours

Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 (a) An experiment has a sample space with 10 equally likely elements $S=\left\{a_{1}, a_{2}, a_{3}, a_{4}, \ldots . a_{10}\right\}$. Three events are defined a $A=\left\{a_{1}, a_{5}, a_{9}\right\} ; B=\left\{a_{1}, a_{2}, a_{6}, a_{9}\right\}$ and $C=\left\{a_{6}, a_{9}\right\}$. Find the probabilities of: (i) $A \cup B$. (ii) $B \cup C$.
(b) Two cards are drawn from a 52 card deck (the first one is not replaced).
(i) If the first card is a queen, find the probability that the second is also queen.
(ii) What is the probability that both cards are queens?

2 (a) List the properties of conditional distribution function.
(b) Find the value of ' b ' for the density function defined as follows $\mathrm{g}_{\mathrm{x}}(\mathrm{X})=4 \cos (\pi x / 2 b) \operatorname{rect}(\mathrm{x} / 2 \mathrm{~b})$.

3 (a) Find the characteristic function of a Poisson random variable.
(b) Find first and second moments of Poisson random variable from the characteristic function.
$4 \quad$ Two random variables X and Y have a joint density:
$f_{x, y}(x, y)=\frac{10}{4}[u(x)-u(x-4)] u(y) y^{3} \exp \left[-(x+1) y^{2}\right]$, find marginal densities of X, Y.
5 Two random variables X and Y have the joint characteristic function $\emptyset_{x, y}\left(w_{1}, w_{2}\right)=\exp \left(-2 w_{1}^{2}-\right.$ $8 w_{2}^{2}$). Show that X and Y have mean zero and they are uncorrelated.

6 A random process is defined by $X(t)=A t$, where A is a continuous random variable uniformly distributed on (0,1).
(a) Determine the form of the sample functions.
(b) Classify the process.
(c) Is it deterministic?
(d) Find the first-order density function of $X(t)$ at any time t.

7 Show that the random process $X(t)=A \cos \left(\omega_{0} t+\emptyset\right)$ is wide sense stationary for A, ω_{0} (constants) and \emptyset, which is uniformly distributed random variable on the interval ($0,2 \pi$).

8 (a) List the properties of power density spectrum.
(b) Find the power density spectrum of the random process for which $R_{x x}(\tau)=P \cos ^{4}\left(\omega_{0} t\right)$ where P and ω_{0} are constants.

