B.Tech II Year I Semester (R09) Supplementary Examinations December 2015

MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE
(Common to CSE, IT \& CSS)
Time: 3 hours
Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 (a) Show that the proposition $(p \vee \sim q)^{\wedge}(\sim p \vee \sim q) \vee q$ is a tautology.
(b) Show that $((p \rightarrow q) \rightarrow p) \rightarrow p$ is a tautology.
(c) Show that $\left(\sim p^{\wedge}\left(\sim q^{\wedge} r\right)\right) \vee\left(q^{\wedge} r\right)^{\wedge}\left(p^{\wedge} r\right) \equiv r$.

2 Show that $\mathrm{r} v$ s follows logically from premises:
$c \vee d,(c \vee d) \rightarrow \sim b, \sim b \rightarrow\left(a^{\wedge} \sim b\right)$ and $\left(a^{\wedge} \sim b\right) \rightarrow r \vee s$.

3
Let $A=\{a, b, c, d\}$ and R be a relation on A that has the matrix $M R=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$. Construct a digraph of R and list the in-degree \& out degree of all vertices.

4 (a) Prove that the group $<Z_{4},+>$ is cyclic find all its generators.
(b) Prove that "Every cyclic is abelian, but the converse is not true".

5 (a) Solve the recurrence relation using generating function $a_{n}-5 a_{n-1}+6 a_{n-2}=4^{n-2}$ for $n \geq 2$ and $a_{0}=1, a_{1}=5$.
(b) Find the coefficient of x^{5} in $(1-6 x)^{-1}$.

Determine the number of subsets of a set with n elements.
7 (a) Write down the Euler formula for planar graph.
(b) Prove that for any connected planar graph, $\mathrm{v}-\mathrm{e}+\mathrm{r}=2$.

8 (a) Draw the complete graph with 7 vertices.
(b) Show that two simple graphs are isomorphic if and only if their complements are also isomorphic.

