

Code: 9ABS302

B.Tech II Year I Semester (R09) Supplementary Examinations December 2015 **MATHEMATICS – III** (Ourseau to 555, 505, 515, 500)

(Common to EEE, ECE, EIE, E.Con.E & ECC)

Time: 3 hours

Max. Marks: 70

Answer any FIVE questions All questions carry equal marks

- 1 (a) Prove that $\int_0^1 \frac{x^2 dx}{\sqrt{1-x^4}} \times \int_0^1 \frac{dx}{\sqrt{1+x^4}} = \frac{\pi}{4\sqrt{2}}$.
 - (b) Show that $(2n+1)x P_n(x) = (n+1)P_{n+1}(x) + n P_{n-1}(x)$.
- 2 (a) Show that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin even though C R equations are satisfied there.
 - (b) Find the analytic function z = u + iv, if $2u + v = e^{x}(\cos y \sin y)$.
- 3 (a) Prove that $log\left(\frac{a+ib}{a-ib}\right) = 2i \tan^{-1}\left(\frac{b}{a}\right)$. Hence evaluate $cos\left[i \log\left(\frac{a+ib}{a-ib}\right)\right]$. (b) Find the general value of log(-i).
- 4 (a) Evaluate ∫_{1-i}²⁺³ⁱ (z² + z)dz along the line joining the points (1, -1) and (2, 3).
 (b) State and prove Cauchy's integral theorem.
- 5 (a) Find the first four terms of the Taylor's series expansion of the complex variable function $f(x) = \frac{z+1}{(z-3)(z-4)}$ about z = 2. Find the region of convergence.
 - (b) Find the Laurent's series expansion of $\frac{7z-2}{z(z+1)(z-2)}$ in annulus 1 < |z+1| < 3.
- 6 (a) Use Cauchy's residue theorem to evaluate $\oint_c \frac{dz}{(z^2+4)^2}$ where C is the circle |z i| = 2.

(b) Show that
$$\int_0^{2\pi} \frac{\cos 2\theta \, d\theta}{1 - 2a \cos \theta + a^2} = \frac{2\pi a^2}{1 - a^2}$$
, $(a^2 < 1)$.

- 7 (a) If the real number a > e, prove by using Rouche's theorem that the equation $e^z = az^n$ has *n* roots inside the unit circle.
 - (b) Prove that all the zeros of $z^7 5z^3 + 12 = 0$ lie between the circles $C_1 : |z| = 1$ and $C_2 : |z| = 2$.
- 8 (a) Discuss the transformation of $\omega = z + \frac{1}{z}$ and also state one application of this transformation.
 - (b) Under the transformation $\omega = \frac{1}{z}$ find the image of the circle |z 2i| = 2.

www.FirstRanker.com