Code: 9ABS302

B.Tech II Year I Semester (R09) Supplementary Examinations December 2015
 MATHEMATICS - III
 (Common to EEE, ECE, EIE, E.Con.E \& ECC)

Time: 3 hours
Max. Marks: 70

Answer any FIVE questions
 All questions carry equal marks

1 (a) Prove that $\int_{0}^{1} \frac{x^{2} d x}{\sqrt{1-x^{4}}} \times \int_{0}^{1} \frac{d x}{\sqrt{1+x^{4}}}=\pi / 4 \sqrt{2}$.
(b) Show that $(2 n+1) x P_{n}(x)=(n+1) P_{n+1}(x)+n P_{n-1}(x)$.

2 (a) Show that the function $f(z)=\sqrt{|x y|}$ is not analytic at the origin even though $\mathrm{C}-\mathrm{R}$ equations are satisfied there.
(b) Find the analytic function $z=u+i v$, if $2 u+v=e^{x}(\cos y-\sin y)$.

3 (a) Prove that $\log \left(\frac{a+i b}{a-i b}\right)=2 i \tan ^{-1}(b / a)$. Hence evaluate $\cos \left[i \log \left(\frac{a+i b}{a-i b}\right)\right]$.
(b) Find the general value of $\log (-i)$.

4 (a) Evaluate $\int_{1-i}^{2+3 i}\left(z^{2}+z\right) d z$ along the line joining the points $(1,-1)$ and $(2,3)$.
(b) State and prove Cauchy's integral theorem.

5 (a) Find the first four terms of the Taylor's series expansion of the complex variable function $f(x)=\frac{z+1}{(z-3)(z-4)}$ about $z=2$. Find the region of convergence.
(b) Find the Laurent's series expansion of $\frac{7 z-2}{z(z+1)(z-2)}$ in annulus $1<|z+1|<3$.

6 (a) Use Cauchy's residue theorem to evaluate $\oint_{c} \frac{d z}{\left(z^{2}+4\right)^{2}}$ where C is the circle $|z-i|=2$.
(b) Show that $\int_{0}^{2 \pi} \frac{\cos 2 \theta d \theta}{1-2 a \cos \theta+a^{2}}=\frac{2 \pi a^{2}}{1-a^{2}},\left(a^{2}<1\right)$.

7 (a) If the real number $a>e$, prove by using Rouche's theorem that the equation $e^{z}=a z^{n}$ has n roots inside the unit circle.
(b) Prove that all the zeros of $z^{7}-5 z^{3}+12=0$ lie between the circles $C_{1}:|z|=1$ and $C_{2}:|z|=2$.

8 (a) Discuss the transformation of $\omega=z+\frac{1}{z}$ and also state one application of this transformation.
(b) Under the transformation $\omega=\frac{1}{z}$ find the image of the circle $|z-2 i|=2$.

