Code: 13A03302

B.Tech II Year I Semester (R13) Regular \& Supplementary Examinations December 2015 THERMODYNAMICS
 (Mechanical Engineering)
 (Use of Thermodynamics tables, Mollier diagram, Psychrometric chart and Refrigeration tables are permitted in the examination hall)

Time: 3 hours
Max. Marks: 70

PART - A
(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks)
(a) State the differences between a closed system and an open system.
(b) Explain what you understand by the term thermodynamic equilibrium.
(c) List out the types of irreversibility.
(d) State the Kelvin Planck statement of the second law of thermodynamics.
(e) What is a pure substance?
(f) Write down the steady flow energy equation for a nozzle and diffuser.
(g) Write down the equation of state of an ideal gas.
(h) List out the applications of Clausius - Clapeyron equation.
(i) Write down the formula for air standard efficiency of an Otto cycle.
(j) Define an ideal gas.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

Code: 13A03302

UNIT - III

6 A vessel of volume $0.04 \mathrm{~m}^{3}$ contains a mixture of saturated water and statured steam at a temperature of $250^{\circ} \mathrm{C}$. The mass of the liquid present is 9 kg . Find the pressure, the mass, the specific volume, the enthalpy, the entropy and the internal energy.

OR

7 The following data were obtained with a separating and throttling calorimeter:
Pressure in pipeline $=1.5 \mathrm{MPa}$
Condition after throttling $=0.1 \mathrm{MPa}, 110^{\circ} \mathrm{C}$
During 5 min moisture collected in the separator $=0.150$ liter at $70^{\circ} \mathrm{C}$
Steam condensed after throttling during $5 \mathrm{~min}=3.2 \mathrm{~kg}$
Find the quality of steam in the pipeline.

UNIT - IV

A mass of air is initially at $260^{\circ} \mathrm{C}$ and 700 kPa and occupies $0.028 \mathrm{~m}^{3}$. The air is expanded at constant pressure to $0.084 \mathrm{~m}^{3}$. A polytropic process with $\mathrm{n}=1.50$ is then carried out, followed by a constant temperature process which completes a cycle. All the processes are reversible.
(a) Sketch the cycle in the $\mathrm{p}-\mathrm{v}$ and Ts planes.
(b) Find the heat received and heat rejected in the cycle.
(c) Find the efficiency of the cycle.

> OR

Prove that $\mu_{s}-\mu_{j}=\frac{V}{C_{p}}$.

UNIT - V

A certain gas $C_{P}=1.968$ and $C_{V}=1.507 \mathrm{~kJ} / \mathrm{kgK}$. Find the molecular weight and the gas constant. A constant volume chamber of $0.3 \mathrm{~m}^{3}$ capacity contains 2 kg of this gas at $5^{\circ} \mathrm{C}$. Heat is transferred to the gas until the temperature is $100^{\circ} \mathrm{C}$. Find the work done, the heat transferred and the changes in internal energy, enthalpy and entropy.

Derive the Air standard efficiency of a diesel cycle.

