

B.Tech II Year I Semester (R13) Regular & Supplementary Examinations December 2015

SIGNALS & SYSTEMS

(Common to ECE and EIE)

Time: 3 hours

3

PART – A

Max. Marks: 70

(Compulsory Question)

- Answer the following: $(10 \times 02 = 20 \text{ Marks})$ 1
 - (a) Find the frequencies present in a signal $x(t) = \sin 3t + \cos^2(t)$.
 - Draw the graphical form of decaying, raising and double exponential signals. (b)
 - (c) What are the characteristics of filter?
 - (d) How to represent periodic signals by Fourier series?
 - (e) List out any two Fourier transformable pairs.
 - (f) Determine the DTFT of $\delta(n-2)+\delta(n+2)$.
 - Obtain the magnitude of frequency domain of unit step signal u(n). (g)
 - Mention the characteristics of distortion less transmission system. (h)
 - Differentiate Fourier, Laplace and z-Transforms. (i)
 - (j) State the final value theorem of Laplace and z-transforms.

PART – B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

- (a) What is the concept of impulse function? Why the amplitude is infinity at origin? Explain. 2
 - (b) Examine the continuous time system $y(t)=T\{x(t)\}=2x(t)+3$ for linearity, time invariance, causality and stability.

OR

- (a) Why the unit step signal u(t) is not even and not odd? Separate even and odd parts of u(t).
- (b) Construct the convoluted signal $x(t) = x_1(t) \otimes x_2(t)$, where $x_1(t)=u(t-1)-u(t-4)$ and $x_2(t)=u(t-2)-u(t-3)$.

UNIT – II

- (a) List out any three properties of continuous time trigonometric Fourier series. 4
 - (b) Analyze the representation of a signal by a set of mutually orthogonal sinusoidal signals.

OR

- 5 (a) What is the importance of discrete time Fourier series?
 - (b) How discrete time filters are described with differential equations? Explain with suitable example.

UNIT – III

- (a) Compare Fourier transform with Fourier series. 6
 - Obtain the time domain representation of X(w) =(b)

OR

- 7 (a) State and prove convolution property of Fourier transform.
 - (b) Find the Fourier transform of x(n)=n(n-1)u(n). Draw its magnitude spectrum.

UNIT – IV

- (a) What is the importance of sampling theorem in communication? Explain. 8
 - (b) Analyze the effect of under sampling in communication.

OR

- Describe time and frequency domain aspects of non-ideal filters. 9 (a)
 - Give one example for first order and second order discrete time systems. Obtain the relation between output (b) and input.

UNIT – V

List any three Laplace transformable pairs. 10 (a)

(b) Solve the difference equation
$$y(n) - 2 y(n-1) = x(n)$$
 with $x(n) = (1/3)^n u(n)$.

- Analyze the various constraints on ROC for various classes of discrete time signals. 11 (a)
- Get the Z-Transform of y(n)=3x(n)+2x(n-1) for $x(n)=3(1/2)^n u(n)+2(1/3)^n u(n)$.

www.FirstRanker.com