www.FirstRanket.13m
B.Tech II Year I Semester
(R13)
Regular \& Supplementary Examinations December 2015
MATHEMATICS - II
(Common to CE and ME)

Max. Marks: 70
Time: 3 hours
PART - A
(Compulsory Question)

Answer the following: (10 X $02=20$ Marks $)$
(a) Define symmetric matrix and if $\left[\begin{array}{ccc}3 & a & b \\ -2 & 2 & 4 \\ 7 & 4 & 5\end{array}\right]$ is symmetric, then $(a, b)=$ \qquad
(b) If $\mathrm{A}=\left[\begin{array}{ccc}0 & 2 b & c \\ a & b & -c \\ a & b & c\end{array}\right]$ is orthogonal then $(|a|,|b|,|c|)=$
(c) Newton's iterative formula for finding the cube root of a number N is \qquad
(d) Write Lagrange's formula and find $y(1)$ from the data

x	0	2	3
y	3	1	2

(e) Find $\mathrm{y}^{\prime}(1.2)$ if $\mathrm{x}_{0}=1.2, \rho=0, \mathrm{~h}=0.2, \Delta \mathrm{y}_{0}=0.416, \Delta^{2} \mathrm{y}_{0}=0.336$ and $\Delta^{3} \mathrm{y}_{0}=0.048$.
(f) Write Milne's predictor corrector formula.
(g) The Euler's integral formula for the constants a_{n} for the function $f(x)$ defined in the interval $(0,2 l)$ is ---
(h) The Fourier cosine transform of $\mathrm{f}(\mathrm{x})=\mathrm{e}^{-\mathrm{ax}}(\mathrm{x} \geq 0, \mathrm{a} \geq 0)$ is
(i) The partial differential equation of all planes whose x and y intercepts are always equal is \qquad
(j) The partial differential equation obtained by eliminating a and b from $z=\left(x^{2}+a^{2}\right)\left(y^{2}+b^{2}\right)$ is \qquad
PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

Show that $A=\left[\begin{array}{lll}\mathrm{i} & 0 & 0 \\ 0 & 0 & \mathrm{i} \\ 0 & \mathrm{i} & 0\end{array}\right]$ is Skew-Hermitian and also unitary. Find its Eigen values and Eigen vectors.
OR

UNIT - III

Find the approximate area bounded by the curve $y=\sqrt{1-x^{2}}$ and the x-axis by: (i) Trapezoidal rule. (ii) Simpson's 1/3 rule.

OR

Apply R-K $4^{\text {th }}$ order method to find $y(0.1)$ where $\frac{d y}{d x}=x+y, y(0)=1$.

UNIT - IV

Find the Fourier series of the function $f(x)=e^{a x}$ in $(0,2 \pi)$.
OR
Find the Fourier transform of $f(x)=\left\{\begin{array}{ll}1-x^{2} & |x| \leq 1 \\ 0 & |x|>1\end{array}\right.$. Hence evaluate $\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} \cos \frac{x}{2} d x$.

UNIT - V

Form the partial differential equation by eliminating arbitrary function: $y z+z x+x y=f\left(\frac{z}{x+y}\right)$.
OR
An insulated rod of length ℓ has its ends A and B maintained at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively. Until steady state conditions prevail. If ' B ' is suddenly reduced to $0^{\circ} \mathrm{C}$ and maintained at $0^{\circ} \mathrm{C}$, find the temperature at a distance x from A at time t.

