ELECTRICAL \& ELECTRONICS ENGINEERING

(Mechanical Engineering)
Time: 3 hours
Max. Marks: 70

Answer all questions
 All questions carry equal marks

 PART - A
 (Electrical Engineering)

UNIT-I

1 (a) Explain construction and the principle of operation of DC generator.
(b) A 4 pole DC generator has a lap-wound armature with 90 slots each containing 6 conductors. If the generator runs at 1500 r.p.m. The flux per pole is 0.03 Wb , Calculate the emf generated.
(a) Derive the expression for torque developed in a DC motor.
(b) Explain the speed control methods of DC shunt motor.

UNIT - II

3 (a) Explain the principle of operation of single phase transformer.
(b) The no load ratio of a 50 Hz , single phase transformer is $6000 / 250 \mathrm{~V}$, estimate the number of turns in each winding if the maximum flux is 0.06 Wb in the core.

OR
4 (a) Explain the various features of an ideal transformer.
(b) What are the losses in a transformer? Explain them.

UNIT - III

5 (a) Derive the expression for maximum torque in induction motor.
(b) List out various applications of Induction motors.

OR
6
(a) Explain the principle of operation of alternator
(b) Define and explain slip of 3-phase induction motor.

PART - B

(Electronics Engineering)

UNIT-I

(a) (i) Convert the binary number101101.10101 in to decimal number.
(ii) Add and subtract the binary numbers 101101.0101 and 10001.101
(b) Construct AND and OR gates by using NOR gate

Simplify the following expression $Y=A[B+C(A B+A C)]$. Draw the logic circuit for the simplified function.

