Answer any FIVE questions
All questions carry equal marks

1 (a) Explain about Piezometer.
(b) Determine the viscosity of a liquid having kinematic viscosity 6 stokes and specific gravity 1.95.

2 (a) State and derive Bernoulli's equation.
(b) Define stream line, path line streak line and stream tube.

3 (a) An orifice meter with orifice diameter 10 cm is inserted in a pipe of 20 cm diameter. The pressure gauges fitted upstream and downstream of the orifice meter given readings of $19.62 \mathrm{~N} / \mathrm{cm}^{2}$ and $9.81 \mathrm{~N} / \mathrm{cm}^{2}$ respectively. Take $\mathrm{C}_{\mathrm{d}}=0.6$. Find the discharge of water through pipe.
(b) Explain Reynolds experiment.

4 (a) Derive the equation for force exerted by the jet on a stationary vertical plate when it strikes the plate in a normal direction.
(b) A jet of water of diameter 75 mm moving with a velocity of $25 \mathrm{~m} / \mathrm{s}$ strikes a fixed plate in such a way that the angle between the jet and the plate is 60°. Find the force exerted by the jet on the plate in the direction normal to the plate and in the direction of the jet.

5 What are the various types of hydro electric power plants? Explain in detail.

6 Explain working of a Pelton wheel with sketch.
7 (a) Explain constant head curves of a turbine.
(b) A turbine develops 7357.5 kW S.P when running at 200 rpm . The head on the turbine is 40 m . If the head on the turbine is changed to 25 m determine the speed and power developed by the turbine.

A double-acting reciprocating pump running at $40 \mathrm{r} . \mathrm{p} . \mathrm{m}$ is discharging $1.0 \mathrm{~m}^{3}$ of water per minute. The pump has a stroke of 400 mm . The diameter of the piston is 200 mm . The delivery and suction head are 20 m and 5 m respectively. Find the slip of the pump.

