B.Tech II Year II Semester (R09) Supplementary Examinations December/January 2015/2016 STRENGTH OF MATERIALS - II

(Civil Engineering)

Time: 3 hours
Max. Marks: 70

Answer any FIVE questions
 All questions carry equal marks

1 A thin spherical shell of diameter 600 mm and thickness 3 mm is full of water. It is then subjected to an internal pressure by pumping in additional $60,000 \mathrm{~mm}^{3}$ of water. Determine the internal pressure for the shell material, if $\mathrm{E}=200 \mathrm{GPa}, v=0.3$ and bulk modulus for water is 2 GPa .

2 (a) Stating assumptions derive Lame's equations to find out the stresses in a thick cylindrical shell.
(b) A hollow cylinder has an external diameter of 250 mm and thickness of the wall is 50 mm . The cylinder is subjected to an internal fluid pressure $=35 \mathrm{MPa}$ and external pressure $=3.5 \mathrm{MPa}$. Calculate the maximum and minimum circumferential stresses and plot the variation of the same across the wall thickness.

3 Calculate the angle of twist for a shaft having diameter of 60 mm at one end and 70 mm at the other end in a length of 2 m . Also, find the $\%$ error committed in calculating θ, if it is calculated on the basis if an average diameter of 65 mm .

4 A closely coiled helical spring is made of steel wire 12 mm diameter. The number of coils is 20 and the mean radius of each coil is 75 mm . Calculate the stiffness of the spring. Take $G=0.84 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

5 A stanchion is built-up of two $325 \mathrm{~mm} \times 165 \mathrm{~mm}$ R.S. joists placed 200 mm centre to centre with two $400 \mathrm{~mm} \times 12 \mathrm{~mm}$ plates riveted to each flange. If it is 6 meters long, both ends fixed, calculate the safe axial load using Rankine's formula and a factor of safety 3. For each joist, area of section $=54.9 \mathrm{~cm}^{2}$; $\mathrm{I}_{\mathrm{xx}}=9874.6 \mathrm{~cm}^{4} ; \mathrm{I}_{\mathrm{yy}}=510.8 \mathrm{~cm}^{4}$. Take $\mathrm{f}_{\mathrm{c}}=315 \mathrm{~N} / \mathrm{mm}^{2}$.

6 (a) What is limit of eccentricity for a rectangular section? Prove the limit of eccentricity is less than one sixth of its dimensions of the section.
(b) A steel flat 150 mm wide and 20 mm thick is subjected to a pull of 180 kN , which is off the geometrical axis by 4 mm in the plane which bisects the thickness. Determine the maximum and minimum stress intensities set up in the section.

7 Find the centroidal principal moments of inertia of a equal angle section $60 \times 60 \times 8 \mathrm{~mm}$.
8 A horizontal circular bow girder of radius 8 m is continuous over four equally spaced supports. It carries a vertical u.d.I of $40 \mathrm{kN} / \mathrm{m}$. Obtain the B.M. torsional moment and S.F diagrams for one span indicating the critical values.

