Code: 9A01402

B.Tech II Year II Semester (R09) Supplementary Examinations December/January 2015/2016

HYDRAULICS \& HYDRAULIC MACHINERY

(Civil Engineering)
Time: 3 hours
Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks
(a) Discuss the factors affecting Chezy's c and Manning's n . What are the different values of ' n ' for different surfaces?
(b) Determine the dimensions of an economical Trapezoidal section of an open channel with sides slope $2 \mathrm{H}: 1 \mathrm{~V}$ laid at a slope of 1 in 1600 to carry a discharge of 36 cumecs assuming Chezy's coefficient $\mathrm{C}=50$.

2 (a) Derive the dynamic equation for gradually varied flow. Explain the assumptions made.
(b) A rectangular channel 6 meters wide has a uniform slope of 1 in 2000. Normal flow occurs when there is a constant depth of 0.90 meter and the quantity flowing is 8.50 cumec. A dam placed across the channel raises the depth just upstream of the dam to 1.89 meter when 8.50 cumec is flowing. Find how far the depth will be 1.50 meter.

3 (a) Explain the terms: (i) Geometrical. (ii) Kinematics. (iii) Dynamic similarities.
(b) Give the uses of Buckingham's Pi theorem.

4 (a) Show that when a jet of water impinges on a series of curved vanes, maximum efficiency is obtained when the vane is semi-circular in section and the velocity of vane is half that of jet.
(b) A jet of water 100 mm diameter and having a velocity of $15 \mathrm{~m} / \mathrm{s}$ impinges at the center of a hemispherical vane. The linear velocity of vane is $5 \mathrm{~m} / \mathrm{s}$ in the direction of the jet. Find the force exerted on the vane. How this force would change if the jet impinges on a series of vanes attached to the circumference of a wheel?

5 (a) Explain the design specifications of a Kaplan turbine.
(b) A Pelton wheel has to be designed to develop $12,000 \mathrm{KW}$ of power at an overall efficiency of 86%. The speed is 520 rpm and the head is 400 m . The wheel velocity is 0.46 times the jet velocity. Assuming a nozzle coefficient of 0.975 and an approximate jet ratio of 10 , calculate the wheel diameter, number of jets, diameter of each jet and the number of buckets.

6 (a) What is specific speed? State its significance in the study of hydraulic machines.
(b) What are constant efficiency curves of a turbine? What are their uses?

7 (a) Explain the role of cavitation in centrifugal pumps.
(b) Two geometrically similar pumps are running at the same speed of 1440 rpm . One pump has an impeller diameter of 40 cm and lifts 1000 liters per minute of water against a head of 20 m . Determine the head and the impeller diameter of the second pump to deliver 50% discharge.

8 (a) Describe various types of Hydal schemes
(b) What are underground power houses? Discuss the advantages and disadvantages of a underground power house.

