B.Tech II Year II Semester (R09) Supplementary Examinations December/January 2015/2016

ANALOG ELECTRONIC CIRCUITS
(Electrical \& Electronics Engineering)
Time: 3 hours
Max. Marks: 70

Answer any FIVE questions
 All questions carry equal marks

1 (a) Compare the small signal model of BJT and FET.
(b) For a CB transistor amplifier driven by a voltage source of internal resistance $R_{S}=600 \Omega$, the load impedance is a resistor $R_{L}=1200 \Omega$. The h-parameters are $h_{i b}=22 \Omega, h_{r b}=4 \times 10^{-4}, h_{f b}=-0.98$ and $h_{o b}=0.25 \mu \mathrm{~A} / \mathrm{V}$. Compute the current gain A_{l}, the input impedance R_{i}, voltage gain $A_{\mathrm{v},}$ overall voltage gain A_{vs}, overall current gain $A_{I S}$, output impedance Z_{o} and power gain A_{p}.

2 Draw the hybrid - π model of a transistor and derive its parameters and explain its frequency response.
3 (a) Explain with diagrams of Feedback topologies.
(b) An amplifier has an open loop gain of 90 . When a negative feedback of feedback factor 0.6 is applied to it, calculate the overall gain.

4 (a) Draw the circuit of FET RC phase shift oscillator and derive its frequency oscillations using its equivalent circuit.
(b) Design a Colpitts oscillator with voltage gain of 50 and frequency of oscillation is 25 kHz .

5 (a) Define about class A , class B , class AB and class C operation of power amplifiers.
(b) Design a class B power amplifiers to deliver 25 W to a load resistor $R_{L}=8 \Omega$, using transformer coupling. $\mathrm{V}_{m}=\mathrm{V}_{\mathrm{cc}}=25 \mathrm{~V}$. Assume reasonable data wherever necessary.

6 (a) Explain the response of the clamping circuit when a square wave input is applied under steady state conditions.
(b) Explain the effect of diode characteristics on clamping voltage.
$7 \quad$ Write short notes on:
(a) BJT as a switch.
(b) Latching phenomena in a transistor.

8 (a) Discuss the different methods of triggering a flip-flop. Explain the role of commutating capacitors in a binary circuit.
(b) Draw the circuit diagram of a fixed bias binary with speed up capacitors.

