

Code: 9A04406

R09

B.Tech II Year II Semester (R09) Supplementary Examinations December/January 2015/2016

ELECTROMAGNETIC THEORY & TRANSMISSION LINES

(Electronics & Communication Engineering)

Time: 3 hours Max. Marks: 70

Answer any FIVE questions
All questions carry equal marks

- 1 (a) Prove that energy density in an electro static field is $\frac{1}{2} \epsilon E^2$ in order to align 'n' charges.
 - (b) Four point charges of 2nC, -2nC and 4nC are placed at points (2, 4, 6), (0, 0, 8), and (7, 9, 4,) respectively. Find the energy stored in the system.
- 2 (a) Derive the conditions for current density at the conductor conductor interface.
 - (b) Find the current density in a circular wire of radius 2 mm, when the current density is: $J=100(1-e^r)i_z\,A/m^2\;.$
- 3 (a) Introduce the concept of magneto static field through Faraday's law.
 - (b) Derive an expression for the magnetic field due to infinite plane sheet of uniform surface current density.
- 4 (a) Discuss about the inconsistency of Ampere's law and concept of displacement current density.
 - (b) Explain the importance of displacement current.
- 5 Obtain wave equations in loss less and conducting medium for sinusoidal time variations.
- Determine the normal incidence reflection coefficients for sea water, fresh water, and good earth at frequencies of 60 Hz, 1 MHz, 1 GHz, use ε_r = 80, σ = 4 s/m, for sea water; ε_r = 80, σ = 5 x 10⁻³ s/m for fresh water; and ε_r = 15, σ = 10 x 10⁻³ s/m for good earth.
- The characteristic impedance of a certain line is $710 \angle -16^{\circ}$ when the frequency is 1 KHz. At this frequency the attenuation is 0.01neper/km and the phase constant is 0.035 rad/Km. Calculate the primary constants and the phase velocity.
- 8 Describe about smith chart and transients on transmission lines.
