Code: 9A05407
B.Tech II Year II Semester (R09) Supplementary Examinations December/January 2015/2016

FORMAL LANGUAGES \& AUTOMATA THEORY
(Computer Science \& Engineering)
Time: 3 hours
Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 (a) Define string and Alphabet. Discuss the operations on string.
(b) Define language. Discuss its operations.

2 The Moore machine to determine residue mod 3 for binary number is given below convert into equivalent Mealy machine.

QV $^{\Sigma}$	0	1	Output (λ)
q_{0}	q_{0}	q_{1}	0
q_{1}	q_{2}	q_{0}	1
q_{2}	q_{1}	q_{2}	2

Use closure operations to show that the following language is not regular: $L=\{x \in\{a, b, c\} * \mid$ the middle symbol of x is b ; and x is of odd-length\}.

4 Construct regular grammar for following languages:
(a) $\left\{a^{2 n} \mid n \geq 1\right\}$.
(b) $\left\{(a b)^{n} \mid n \geq 1\right\}$.
(c) The set of all strings over $\{a, b\}$ ending in a.

5 (a) Show that CFL's are closed under Kleene closure operation.
(b) Check whether the following grammar is ambiguous or not. Provide at least two examples to support your answer.
$S \rightarrow A B / a a B \quad A \rightarrow a / A a \quad B \rightarrow b$

6 (a) Define PDA. Design a PDA for $L=\left\{x c x^{r} / x \in\{a, b\}^{*}\right\}$. Process the string abbacabba. Note: x^{r} stands for reverse of the string x.
(b) What do you mean by an instantaneous description of a PDA? Explain with example

7 Design a TM for recognizing $L=\left\{x x / x \in\{a, b\}^{*}\right\}$. Show the moves of the TM for the strings abaaba and abaabb.

8 (a) Explain in detail about PCP and MPCP.
(b) Write about Universal Turing Machine.

