B.Tech II Year II Semester (R09) Supplementary Examinations December/January 2015/2016

MECHANICS OF FLUIDS
(Aeronautical Engineering)
Time: 3 hours
Max. Marks: 70

Answer any FIVE questions
 All questions carry equal marks

1 (a) Explain the terms:
(i) Stable equilibrium. (ii) Unstable equilibrium. (iii) Neutral equilibrium of floating bodies.
(b) Each gate of lock is 6 m high and is supported by two hinges placed on the top and bottom of the gate. When the gates are closed, they make an angle of 120°. The width of the lock is 5 m . If the water levels are 4 m and 2 m on the upstream and downstream sides respectively, find the magnitude of the forces on the hinges due to water pressure.

2 (a) What is free vortex? Give some examples of its occurrence. Show how the velocity and pressure vary with radius in a free vortex flow.
(b) Derive an expression for continuity equation in three dimensions for cylindrical coordinate which is applicable for steady and incompressible flow.

3 (a) State Bernoulli's theorem and write down all the assumptions made in its derivations.
(b) At a point in the pipeline where the diameter is 200 mm , the velocity of water is $4 \mathrm{~m} / \mathrm{s}$ and the pressure is $343 \mathrm{kN} / \mathrm{m}^{2}$. At a point 15 m downstream the diameter gradually reduces to 100 mm . Find the pressure at this point, if the pipe is: (i) Horizontal. (ii) Vertical with flow downward. (iii) Vertical with flow upward.

4 (a) Differentiate between fundamental and derived dimensions.
(b) Write about similarity laws and difference between distorted and non distorted models.

5 Water of kinematic viscosity $1.02 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{sec}$ is steadily owing over a smooth at plate at zero angle of attack with a velocity $1.6 \mathrm{~m} / \mathrm{sec}$. The length of the plate is 0.3 m . Calculate:
(a) The thickness of boundary layer at 15 cm from the leading edge.
(b) Shear stress at trailing edge of the plate.

Assume a parabolic profile. Take density $=1000 \mathrm{~kg} / \mathrm{m}^{3}$.
6 (a) Define stagnation points. How the position of the stagnation point for a rotating cylinder in a uniform flow is determined? What is the condition for single stagnation point?
(b) A flat plate $1.5 \mathrm{~m} \times 1.5 \mathrm{~m}$ moves at $50 \mathrm{~km} / \mathrm{hr}$ in stationary air of density $1.15 \mathrm{~kg} / \mathrm{m}^{3}$. If the coefficient of drag and lift are 0.15 and 0.75 respectively. Find: (i) The lift force. (ii) The drag force. (iii) The resultant force. (iv) The power required to keep the plate in motion.

7 (a) Show that in laminar flow through a circular pipe the total kinetic energy of fluid passing per second is twice the value obtained on the basis of average velocity.
(b) A fluid of viscosity 0.8 Pascal-sec and specific gravity 1.1 flows in a horizontal pipe of diameter 10 cm . If the pressure drops per meter length is $4 \mathrm{kN} / \mathrm{m}$, find the power required for 200 m length of pipe.

8 (a) Explain briefly about the shock waves and how these shock waves are formed in convergent and divergent nozzle.
(b) Find the velocity of air flowing at the outlet of a nozzle, fitted to a large vessel which contains air at a pressure of $294.3 \mathrm{~N} / \mathrm{cm}$ (abs) and at a temperature of $20^{\circ} \mathrm{C}$. The pressure at the outlet of the nozzle is $206 \mathrm{~N} / \mathrm{cm}$ (abs). Take $\mathrm{K}=1.4$ and $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{k}$.

