## Code: 9ABS304

B.Tech II Year II Semester (R09) Supplementary Examinations December/January 2015/2016 PROBABILITY \& STATISTICS
(Common to CE, ME, CSS \& IT)
Time: 3 hours
Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks
*****
1 (a) A fair coin is tossed 5 times. What is the probability of having at least one head?
(b) In a team of communication engineers, $80 \%$ know probability theory, $75 \%$ know information theory and $70 \%$ know both probability theory and information theory. Calculate the percentage of engineers who know neither probability theory nor information theory.

The cumulative distribution function for a continuous random variable x

$$
F(x)=\left\{\begin{array}{cc}
1-e^{-2 x} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

Find the density function $\mathrm{f}(\mathrm{x})$.
Five dice were thrown together 96 times. The number of times $4,5,6$ was actually thrown is given below. Calculate the expected frequencies.

| No. of dice | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Frequencies | 1 | 10 | 24 | 35 | 18 | 8 |

A random sample of size 25 from a normal population has the mean $\bar{x}=47.5$ and the standard deviation $s=8.4$. Does this information tend to support or refuse the claim that mean of the population is $\mu=42.1$ ?

5 (a) Define unbiased estimator. What is the more efficient unbiased estimator? Explain briefly.
(b) Show that $\bar{X}$ is an unbiased estimator of the population mean $\mu$.

6 (a) In a city 325 men out of 600 men were found to be smokers. Does this information support the conclusion that the majority of men in this city are smokers?
(b) A sample of 400 items is taken from a population whose S.D. is 10 . The mean of the sample is 40 . Test whether the sample has come from a population with mean 38 ? Also calculate $95 \%$ confidence interval for the population.

7 Scores obtained in a shooting competition by 10 soldiers before and after intensive training are given below:

| Before | 67 | 24 | 57 | 55 | 63 | 54 | 56 | 68 | 33 | 43 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| After | 70 | 38 | 58 | 58 | 56 | 67 | 68 | 75 | 42 | 38 |

Test whether the intensive training is useful at 0.05 level of significance.
8 (a) What is the probability distribution of time spent in the (M/M/1) : ( $\infty / \mathrm{FIFO}$ ) queuing system
(b) What is the probability distribution density function of the waiting time distribution for (M/M/1): ( $\infty / \mathrm{FIFO}$ ) queuing system?

