Max. Marks: 70

B.Tech II Year II Semester (R13) Supplementary Examinations December/January 2015/2016

FORMAL LANGUAGES & AUTOMATA THEORY

(Computer Science and Engineering)

Time: 3 hours

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Give the mathematical definition of the grammar.
 - (b) What is context sensitive grammar.
 - (c) Describe the language generated by the regular expression : $(b + ab)^* (\epsilon + a)$.
 - (d) State the Arden's theorem.
 - (e) Identify the type of the grammar: $S \rightarrow aSa \mid bSb \mid c$.
 - (f) Show that the following CFG is ambiguous.

 $S \rightarrow SS \mid a$

- (g) Write the definition of push down automata (PDA).
- (h) Give any two examples of languages that are accepted by PDA.
- (i) Define multi- tape turing machine.
- (j) What is unrestricted grammar? Give an example.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT – I

- 2 (a) Construct the Grammar for palindrome of binary numbers
 - (b) Construct the Grammar for the language $a^n b^n$, n > 0

OR

Design a minimal DFA over the alphabet $\Sigma = \{0, 1, 2\}$ to accept the language $L = \{w \mid w \cong 0 \bmod 4\}$.

UNIT – II

- 4 State the pumping lemma for regular expressions.
 - (a) (i) Show that $L = \{a^{i^2}/i \ge 1\}$ is not regular by using pumping Lemma.
 - (b) (ii) Show that $L = \{a^i b^j / i, j \ge 1, i \ne j\}$ is not regular by using pumping lemma.

OR

- 5 Prove that the family of regular languages is closed under the following operations:
 - (a) Union.
 - (b) Intersection.
 - (c) Complementation.
 - (d) Reversal.

11

(e) Concatenation.

UNIT - III

6 Define the following terms: (i) Useless symbol. (ii) Null – production. (iii) Unit production.

Remove Null – productions in the following grammar.

 $S \rightarrow ABaC$

 $A \rightarrow BC$

 $B \rightarrow b | \epsilon$

 $C \to D | \epsilon$

 $D \rightarrow \epsilon$

OR

7 Define Chomsky Normal Form, Convert the following grammar into CNF:

 $S \rightarrow bA|aB$; $A \rightarrow bAA|aS|a$; $B \rightarrow aBB|bS|a$.

[UNIT – IV]

- 8 (a) Construct a PDA to accept the language $L = \{WCW^R/W \in (a,b)^+\}$ by the empty stack.
 - (b) Construct a PDA to accept the language $L = \{a^n b^{2n}, n \ge 1\}$ by the final state.

OR

9 Prove that "L is accepted by a PDA M₁ by empty store, if and only if L is accepted by a PDA M₂ by final state".

UNIT – V

10 Prove that the problem that a string w is accepted by a DFA M is decidable