Code: 9A04501

B.Tech III Year I Semester (R09) Supplementary Examinations December 2015

ANALOG COMMUNICATIONS
 (Electronics and Communication Engineering)

Time: 3 hours
Max Marks: 70

Answer any FIVE questions
 All questions carry equal marks

1 (a) What are the benefits of coding? Explain in detail.
(b) Define and describe about:
(i) Information.
(ii) Messages.
(iii) Signals.

2 (a) Draw and explain the low pass and band pass transfer functions.
(b) A AM transmitter radiates 1 kW when the modulation percentage is 50%. How much carrier power is required if we want to transmit the same message by an AM-DSBSC transmitter?

3 Write short notes on:
(a) VSB.
(b) Frequency conversion.
(c) Phase shift method of AMSSB - Sc generation.

4 (a) What is the need for non linear processing circuits in FM?
(b) In an PM system, when an audio frequency is 500 Hz , and the AF voltage is 2.4 V , the frequency deviation is 4.8 kHz . If the AF voltage increased to 10 V while audio frequency dropped to 200 Hz , then what is the new deviation? Find the modulation index in each case.

5 (a) Discuss the concept of interfering sinusoids.
(b) What is the need for frequency multiplier in FM modulator circuit?

6 (a) Explain about Super Heterodyne tracking.
(b) In a broadcast super heterodyne receiver having no RF amplifier, the loaded Q of the antenna coupling circuit is 200 . If the Intermediate frequency is 455 kHz , further in order to have same image frequency rejection at IF frequencies of 1 MHz and 20 MHz , calculate: (i) The loaded Q which an RF amplifier for this receiver would have to have. (ii) The new intermediate frequency that would be needed.

7 (a) Explain about threshold effect in FM.
(b) Two resistors of $20 \mathrm{k} \Omega$ and $50 \mathrm{k} \Omega$ are at room temperature. Calculate for a bandwidth of 100 kHz , the thermal noise voltage (i) For each resistor. (ii) When two resistors are in series. (iii) When two resistors are in parallel. Assume $\mathrm{kT}=4 \times 10^{-21} \mathrm{~W} / \mathrm{Hz}$ at room temperature.

8 Write short notes on the following:
(a) Inter symbol interference.
(b) PTM.
(c) Aliasing.

