

Code: 9A14501

B.Tech III Year I Semester (R09) Supplementary Examinations December 2015

NUMERICAL METHODS

(Mechatronics)

Time: 3 hours

Max Marks: 70

R09

Answer any FIVE questions All questions carry equal marks

- 1 (a) Find a real root of $x^3 5x + 3 = 0$ using bisection method.
 - (b) Find the positive root of $x^4 x 10 = 0$ by iteration method.
- 2 (a) Solve the equation:

3x + y + 2z = 32x - 3y - z = 3x + 2y + z = 4 Using Gauss

- x + 2y + z = 4. Using Gauss-Elimination method.
- (b) Show that the system of equations: 2x + y = 2; 2x + 1.01y = 2.01 are ill conditioned.
- 3 (a) For the given values:

Х	0	2	3	6
f(x)	-4	2	14	58

Using Lagrange's formula for interpolation, find the value of f(4).

(b) Fit the cubic spline for the data:

х	0	1	2	3	
f(x)	1	2	9	28	×

4 (a) Fit a straight line to the data given below:

		х	1	3	5	7	9
		f(x)	1.5	2.8	4.0	4.7	6.0
(b)	Find a	ind a curve $y = ae^{bx}$ to the data:					
		X:	0	2	4		

X:	0	2	4
y:	5.1	10	31.1

5 Evaluate $\int_0^1 \frac{1}{1+x} dx$.

(i) BY Trapezoidal rule.

- (ii) Simpson's $\frac{3}{8}$ rule.
- 6 Employ Taylor's method to obtain approximate value of y(1.1) and y(1.3) for the differential equation $y' = xy^{1/3}, y(1) = 1$. Compare numerical solution obtained with exact solution.

Contd. in page 2

R09

Code: 9A14501

FirstRan

- 7 (a) Solve the boundary value problem: $\frac{d^2y}{dx^2} = x + y$, y(0) = y(1) = 0.
 - (b) Apply the power method to find the dominant Eigen value and Eigen vector of the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.
- 8 Solve the $u_{xx} + u_{yy} = 0$ for the following square mesh with boundary values as shown below, using Leibman's iteration procedure. $500 \quad 1000 \quad 500$

