

## Code: 9A04303



B.Tech III Year I Semester (R09) Supplementary Examinations December 2015

## **PROBABILITY THEORY & STOCHASTIC PROCESSES**

(Electronics and Communication Engineering)

Time: 3 hours

Max Marks: 70

## Answer any FIVE questions

All questions carry equal marks

\*\*\*\*

- 1 (a) A class consists of 6 girls and 10 boys. If a committee of 3 is chosen at random from the class, what is the probability of 3 boys are selected?
  - (b) A and B throws alternatively with a pair of dice. One who first throws a total of 8 wins. What is the probability of B winning if A starts the game?

2 A random variable 'X' has the density function:

- $f_x(X) = K/6$ , for  $-3 \le x \le 3$ ; = 0; else where
- (i) Find 'K'. (ii) P(X < 1). (iii) P(|X| > 1). (iv) P(X + 3 > 4).
- 3 (a) A random variable X has the density function  $f_x(X) = (1/a)e^{-b|x|}$ ,  $-\infty \le x \le \infty$ . Find E[X],  $E[X]^2$  and variance.
  - (b) Prove that E[X] = E[X/Y], if X and Y are independent random variables.
- 4 The joint probability density function of two random variables X and Y given by:  $f(x, y) = A(2x + y^2)$  for  $0 \le x \le 2$ ,  $2 \le y \le 4$ ; = 0; else where

Find: (i) the value of 'A'. (ii)  $P(X \le 1, Y > 3)$ 

- 5 Prove the following:
  - (a) Covariance of (X, Y) = E(XY) E(X). E(Y).
  - (b) Variance (X + Y) = Var(X) + Var(Y) + 2Cov(X, Y).
- 6 Two statistically independent random variables X and Y have mean value 2 and 4 respectively. They have second moments as 8 and 25 respectively. Find the mean and variance of the random variable W = 3X Y.
- 7 (a) N(t) is a zero mean wide sense stationary noise process for which  $R_{NN}(\tau) = (N_0/2)\delta(t)$ . Where  $N_0 > 0$  is a finite constant. Determine whether N(t) is mean ergodic.
  - (b) A random process X(t) is defined as  $X(t) = \cos \omega t$ , where ' $\omega$ ' is a uniform random variable over  $(0, \omega_0)$ . Find whether X(t) is stationary or not.
- 8 (a) Derive the relation between cross correlation and cross power spectral density.
  - (b) Find the power spectral density of a wide sense stationary process if its autocorrelation function is defined as  $R(\tau) = K \exp(-|\tau|)$ .

## www.FirstRanker.com