Code: 9A04303

B.Tech III Year I Semester (R09) Supplementary Examinations December 2015

PROBABILITY THEORY \& STOCHASTIC PROCESSES
(Electronics and Communication Engineering)
Time: 3 hours
Max Marks: 70

Answer any FIVE questions
 All questions carry equal marks

1 (a) A class consists of 6 girls and 10 boys. If a committee of 3 is chosen at random from the class, what is the probability of 3 boys are selected?
(b) A and B throws alternatively with a pair of dice. One who first throws a total of 8 wins. What is the probability of B winning if A starts the game?

2 A random variable ' X ' has the density function:

$$
\begin{aligned}
\mathrm{f}_{\mathrm{x}}(\mathrm{X}) & =K / 6, \text { for }-3 \leq \mathrm{x} \leq 3 ; \\
& =0 ; \text { else where }
\end{aligned}
$$

(i) Find 'K'. (ii) $P(X<1)$. (iii) $P(|X|>1)$. (iv) $P(X+3>4)$.

3 (a) A random variable X has the density function $\mathrm{f}_{\mathrm{x}}(\mathrm{X})=(1 / \mathrm{a}) \mathrm{e}^{-\mathrm{b}|\mathrm{x}|},-\infty \leq \mathrm{x} \leq \infty$. Find $E[X], E[X]^{2}$ and variance.
(b) Prove that $E[X]=E[X / Y]$, if X and Y are independent random variables.

4 The joint probability density function of two random variables X and Y given by:

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}, \mathrm{y}) & =\mathrm{A}\left(2 \mathrm{x}+\mathrm{y}^{2}\right) \text { for } 0 \leq \mathrm{x} \leq 2,2 \leq \mathrm{y} \leq 4 \\
& =0 ; \text { else where }
\end{aligned}
$$

Find: (i) the value of 'A'. (ii) $P(X \leq 1, Y>3)$.
5 Prove the following:
(a) Covariance of $(X, Y)=E(X Y)-E(X) . E(Y)$.
(b) Variance $(\mathrm{X}+\mathrm{Y})=\operatorname{Var}(\mathrm{X})+\operatorname{Var}(\mathrm{Y})+2 \operatorname{Cov}(\mathrm{X}, \mathrm{Y})$.
$6 \quad$ Two statistically independent random variables X and Y have mean value 2 and 4 respectively. They have second moments as 8 and 25 respectively. Find the mean and variance of the random variable $W=3 X-Y$.

7 (a) $N(t)$ is a zero mean wide sense stationary noise process for which $R_{N N}(\tau)=\left(N_{0} / 2\right) \delta(t)$. Where $N_{0}>0$ is a finite constant. Determine whether $N(t)$ is mean ergodic.
(b) A random process $X(t)$ is defined as $X(t)=\cos \omega t$, where ' ω ' is a uniform random variable over $\left(0, \omega_{0}\right)$. Find whether $X(t)$ is stationary or not.

8 (a) Derive the relation between cross correlation and cross power spectral density.
(b) Find the power spectral density of a wide sense stationary process if its autocorrelation function is defined as $R(\tau)=K \exp (-|\tau|)$.

