Code: 9A05407
B.Tech III Year I Semester (R09) Supplementary Examinations December 2015

FORMAL LANGUAGES \& AUTOMATA THEORY
(Computer Science and Engineering)
Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 (a) Design NFA accepting all strings ending with 101 over $\Sigma=\{0,1\}$.
(b) Construct a NFA in which triple ' 1 ' is followed by triple ' 0 ' over $\Sigma=\{0,1\}$.

2 Prove the theorem "if L is accepted by an NFA with ε - transitions then L is accepted by an NFA without ε - transitions".

3 (a) Discuss the applications of a regular expression.
(b) Explain and prove 'if L_{1} and L_{2} are two languages then $L_{1} U L_{2}$ is regular.

4 Discuss and explain the following:
(a) CFL are not closed under intersection and complementation.
(b) A regular grammar generates an empty string.
(c) A regular language is also context free but not reverse.

5 (a) Convert the CFG with the following productions into GNF.
$A \rightarrow 00 A / B / 0$
$B \rightarrow 1$ 11
(b) Write procedure for eliminating unit productions from a given CFG. Eliminate unit productions from the following grammar.

$$
\begin{array}{ll}
\mathrm{S} \rightarrow \mathrm{~A} / \mathrm{B} / \mathrm{Cc} & \mathrm{~A} \rightarrow \mathrm{aBb} / \mathrm{B} \\
\mathrm{~B} \rightarrow \mathrm{aB} / \mathrm{bb} & \mathrm{C} \rightarrow \mathrm{Cc} / \mathrm{B}
\end{array}
$$

6 (a) Show that if L is accepted by a PDA in which no symbols are ever removed from the stack, then L is regular.
(b) Design a PDA for recognizing $L=\left\{\mathrm{a}^{\mathrm{i}} \mathrm{b}^{\mathrm{j}} \mathrm{j}<=\mathrm{i}\right.$ and $\left.\mathrm{i}, \mathrm{j}>0\right\}$. Show the moves of the PDA for the string aabb.

7 (a) Design a TM for $L=\left\{x \in\{a, b, c\}^{*} /\right.$ no. of $a \prime s$, no. of b's and no. of $c^{\prime} s$ in x are equal $\}$. Draw its transition diagram. Trace the moves of TM for abcabc.
(b) Discuss about any two modifications to the basic model of a TM.

8 Write short notes on:
(a) Turing reducibility.
(b) Chomsky hierarchy of languages.
(c) NP hard and NP complete problems.

