

B.Tech III Year I Semester (R13) Regular Examinations December 2015

FORMAL LANGUAGES & AUTOMATA THEORY

(Information Technology)

Time: 3 hours

Max. Marks: 70

PART – A

(Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
 - (a) Define deterministic finite automata.
 - (b) Define non-deterministic finite automata.
 - (c) Find DFA for L = {w: $|w| \mod 3 = 0$ } where $\sum = \{a, b\}$.
 - (d) Find NFA with three states that accepts the language $\{ab,abc\}^*$.
 - (e) Write RE for L = {w $\in \{0,1\}^*$: w has no pair of consecutive zeros}.
 - (f) What is left factoring?
 - (g) Define primitive recursive function.
 - (h) Distinguish between DPDA and NPDA.
 - (i) Write variations of Turing machine.
 - (j) Explain about modified PCP.

PART – B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

2 Describe Chomsky hierarchy of languages with proper examples.

OR

3 State and explain Myhill-Nerode theorem.

UNIT – II

4 (a) What are the closure properties of regular languages?

(b) Prove that, the following Language is non-regular using pumping Lemma:

(i) $L = \{a^n b^{n+1} | n > 0\}.$ (ii) $L = \{ww | w \in \{0,1\}^*\}.$

OR

5 Explain left & right derivations and also left & right derivation trees with examples.

UNIT – III

6 (a) Show that L = { aⁱbⁱ | j = i²} is not context free language.
(b) Find if the given grammar is finite or infinite: S→AB, A→BC|a, B→CC|b, C→a

AB, A→BC|a, B→C

7 (a) Explain Ambiguity in CFGs.

(b) Convert the grammar into GNF: S \rightarrow ABb|a, A \rightarrow aaA|B, B \rightarrow bAb

UNIT – IV

OR

- 8 (a) Find the PDA that accepts the following language: $L = \{x \in \{a,b\}^*: |x|_a=2|x|_b\} \text{ via empty stack.}$
 - (b) Explain instantaneous description.

OR

9 Give the equivalence between CFL and PDA.

UNIT – V

- 10 (a) What are undecidable problems? Explain why PCP problem is considered undecidable.
 - (b) What is a Universal Turing machine?

OR

1 Design Turing machine to accept all set of palindromes over {0,1}*.also write the instantaneous description on the string 1001001**www.FirstRanker.com**