## Code: 9A02406

B.Tech III Year II Semester (R09) Supplementary Examinations December/January 2015/2016

NETWORK THEORY
(Electrical and Electronics Engineering)
Time: 3 hours
Max Marks: 70
Answer any FIVE questions
All questions carry equal marks
1 (a) Derive the relation between phase and line values of a three phase delta connected balanced system.
(b) Three inductive coils, each with a resistance of $15 \Omega$ and an inductance of 0.03 H are connected in star to three phase, $400 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate (i) phase current and line current (ii) total power absorbed.

2 A 3-phase, 3 wire supply of $440 \mathrm{~V}, \mathrm{RYB}$ system has a star connected load with $Z_{R}=5 \angle 30^{\circ}, Z_{Y}=10 \angle 45^{\circ}$ and $Z_{B}=10 \angle 60^{\circ}$ ohms. Calculate line currents and neutral displacement voltage.

3 (a) Obtain the expression for $i(t)$ in a series $R-L$ circuit is exited with a dc voltage source $V$, when the switch is closed at time $\mathrm{t}=0$.
(b) In the circuit shown below, switch ' K ' is closed at $\mathrm{t}=0$. Find the values of i , $\mathrm{di} / \mathrm{dt} \mathrm{and}^{2} \mathrm{~d}^{2} / \mathrm{dt}^{2}$ at $\mathrm{t}=0^{+}$. Given that $\mathrm{V}=10 \mathrm{~V}, \mathrm{R}=50 \Omega$ and $\mathrm{C}=2 \mu \mathrm{~F}$.


Find the $z$-parameters for the circuit shown below:

$6 \quad$ Write short notes on:
(a) Transformed network.
(b) Cascaded networks.
$7 \quad$ Find the Fourier series expansion of the Periodic wave form shown.

(a) $\delta\left(t-t_{0}\right)$.
(b) $\operatorname{Cos} w_{0} t$.

