B.Tech I Year (R13) Supplementary Examinations June 2016
 NETWORK ANALYSIS
 (Common to ECE and EIE)

Time: 3 hours
PART - A
(Compulsory Question)

1 Answer the following: (10 $\times 02=20$ Marks $)$
(a) State maximum power transfer theorem.
(b) What is Tie- set?
(c) Write expression to find current in RL circuit.
(d) An impedance of $(3+4 \mathrm{j})$ ohm is connected with a resistance of 10 ohm. Find the ratio of power loss in these parallel circuits.
(e) Write expression for resonant frequency for a series RLC circuit.
(f) A coupled circuit with inductances $20 \mathrm{mH}, 50 \mathrm{mH}$ and coefficient of coupling 0.8 , find the mutual inductance for the circuit.
(g) Write transmission parameters for two port network.
(h) Write standard form of state space model.
(i) In a simple T section, a low pass filter has design impedance R_{0}. Find $Z_{0 \pi}$ at $0.9 f_{c}$.
(j) Define ideal filter.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

Find the transfer function (V2/V1) for the network given using mesh analysis.

OR
Find Thevinin equivalent circuit at points 1,2

Explain sinusoidal response of series RC circuit with circuit diagram, phasor diagram and waveforms along with mathematical expressions

OR

Two parallel impedance branches take currents $3.15\left\llcorner 68^{\circ} A\right.$ and $12\left\llcorner-45^{\circ} \mathrm{A}\right.$. Find the complex power drawn from supply if the supply voltage is $17\left\llcorner 0^{\circ} \mathrm{V}\right.$.

UNIT - III

A RLC tank circuit is composed of components having values as $R=0.2$ ohm, $L=100 \mathrm{mH}, \mathrm{C}=50$ micro Farads. Determine the resonance frequency and the corresponding input current at 24 V .

OR

In an ideal transformer, $\mathrm{K}=0.8$, the mutual inductance $=10 \mathrm{H}$, number of primary and secondary turns are 50 and 200 . Obtain the value of primary current to produce 0.5 Wb flux to link the secondary coil.

UNIT - IV

Represent the following equation in state variable form:

$$
\left(d y^{2} / d t^{2}\right)+(5 d y / d t)+6 y=u(t)
$$

OR

Explain Z-parameters and h parameters a of two port network.

UNIT - V

Explain constant K filter, Constant K -low pass filer and Constant K -high pass filter.
OR
A T-section low pass filter has series inductance 80 mH and shunt capacitance 0.022 micro Farads. Determine the cut-off frequency and nominal design impedance (R_{0}). Also design an equivalent $\pi-$ section.

