

B.Tech I Year I Semester (R15) Supplementary Examinations June 2016 MATHEMATICS – I

(Common to CE, EEE, CSE, ECE, ME, EIE and IT)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: (10 X 02 = 20 Marks)

- (a) Find an integrating factor so that $\frac{dy}{dx} = \frac{y}{x} + \frac{x^2 + y^2}{x^2}$ be an exact differential equation.
- (b) Solve $(D^3 1)y = 0$.
- (c) If the complementary function of $(D^2 + 1)y = x \sin x$ is $y = A \cos x + B \sin x$ then find A.
- (d) Roots of the auxiliary equation for $\left(LD^2 + RD + \frac{1}{c}\right)q = E\sin pt$.
- (e) If $u = e^{x+y}$, $v = e^{-x+y}$ then find Jacobian.
- (f) Find the radius of curvature at any point of the cardioids is $s = 4a \sin \frac{\Psi}{3}$.
- (g) Evaluate $\int_0^1 \int_0^1 \frac{dx \, dy}{\sqrt{1-x^2} \sqrt{1-y^2}}$.
- (h) Find the quadrature of the curve $y = \sin x$ from x = 0 to $x = \pi$.
- (i) Find $\nabla^2 r^n$.
- (j) Evaluate $\int_{C} xdy ydx$ around the circle $C: x^{2} + y^{2} = 1$.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT – I

2 Find the orthogonal trajectories of the family of cardioids $r = a(1 - \cos \theta)$ where 'a' is a parameter.

OF

3 Solve $(D^2 - 4D)y = e^x + \sin 3x \cos 2x$.

UNIT - II

Solve the equation using method of variation of parameters: $(D^2 + 3D + 2)y = e^x + x^2$.

OR

A horizontal beam is uniformly loaded. It's one end is fixed the other end is subjected to a tensile force P. The deflection of the beam is given by $EI \frac{d^2y}{dx^2} = py - \frac{1}{2}wx^2$. Given that $\frac{dy}{dx} = 0$ at x = 0, show that the deflection of the beam for a given x is $y = \frac{w}{px^2}(1 - \cos h \, nx) + \frac{wx^2}{2p}$, where $x^2 = \frac{p}{EI}$.

UNIT – III

Find the point on the lx + my + nz = P which is nearest to the origin.

OR

7 Find the radius of curvature at (-2, 0) on the curve $y^2 = x^3 + 8$.

UNIT – IV

8 Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} y^2 dxdy$ by changing the order of integration.

)R

9 Find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

UNIT – V

Evaluate $\int_c \left[(2xy^3 - y^2\cos x)dx + (1 - 2y\sin x + 3x^2y^2)dy \right]$ where C is the arc of the parabola $2x = \pi y^2$ from (0, 0) to $\left(\frac{\pi}{2}, 1\right)$.

OR

Verify Gauss's divergence theorem for $\overline{F} = (x^2 - yz)\overline{i} + (y^2 - zx)\overline{j} + (z^2 - xy)\overline{k}$ taken over the rectangular parallelepiped $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$.
