B.Tech I Year I Semester (R15) Supplementary Examinations June 2016
 MATHEMATICS - I

(Common to CE, EEE, CSE, ECE, ME, EIE and IT)
Time: 3 hours
PART - A
(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks)
(a) Find an integrating factor so that $\frac{d y}{d x}=\frac{y}{x}+\frac{x^{2}+y^{2}}{x^{2}}$ be an exact differential equation.
(b) Solve $\left(D^{3}-1\right) y=0$.
(c) If the complementary function of $\left(D^{2}+1\right) y=x \sin x$ is $y=A \cos x+B \sin x$ then find A .
(d) Roots of the auxiliary equation for $\left(L D^{2}+R D+\frac{1}{c}\right) q=E \sin p t$.
(e) If $u=e^{x+y}, v=e^{-x+y}$ then find Jacobian.
(f) Find the radius of curvature at any point of the cardioids is $s=4 a \sin \frac{\Psi}{3}$.
(g) Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{\sqrt{1-x^{2}} \sqrt{1-y^{2}}}$.
(h) Find the quadrature of the curve $y=\sin x$ from $x=0$ to $x=\pi$.
(i) Find $\nabla^{2} r^{n}$.
(j) Evaluate $\int_{c} x d y-y d x$ around the circle $C: x^{2}+y^{2}=1$.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

Evaluate $\int_{c}\left[\left(2 x y^{3}-y^{2} \cos x\right) d x+\left(1-2 y \sin x+3 x^{2} y^{2}\right) d y\right]$ where C is the arc of the parabola $2 x=\pi y^{2}$ from $(0,0)$ to $\left(\frac{\pi}{2}, 1\right)$.

OR

11
Find the orthogonal trajectories of the family of cardioids $r=a(1-\cos \theta$ where ' a ' is a parameter. OR
Solve $\left(D^{2}-4 D\right) y=e^{x}+\sin 3 x \cos 2 x$.

UNIT-II

Solve the equation using method of variation of parameters: $\left(D^{2}+3 D+2\right) y=e^{x}+x^{2}$.
OR
A horizontal beam is uniformly loaded. It's one end is fixed the other end is subjected to a tensile force P. The deflection of the beam is given by EI $\frac{d^{2} y}{d x^{2}}=p y-\frac{1}{2} w x^{2}$. Given that $\frac{d y}{d x}=0$ at $x=0$, show that the deflection of the beam for a given x is $y=\frac{w}{\mathrm{px}^{2}}(1-\cosh n x)+\frac{w x^{2}}{2 \mathrm{p}}$, where $\mathrm{x}^{2}=\frac{\mathrm{p}}{\mathrm{EI}}$.

UNIT - III
Find the point on the $\mathrm{lx}+\mathrm{my}+\mathrm{nz}=\mathrm{P}$ which is nearest to the origin.
OR
Find the radius of curvature at $(-2,0)$ on the curve $\mathrm{y}^{2}=\mathrm{x}^{3}+8$.
UNIT - IV
Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y^{2} d x d y$ by changing the order of integration.
OR
Find the volume of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
UNIT - V

Verify Gauss's divergence theorem for $\bar{F}=\left(x^{2}-y z\right) \bar{i}+\left(y^{2}-z x\right) \bar{j}+\left(z^{2}-x y\right) \bar{k}$ taken over the rectangular parallelepiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$.

