Code: 9ABS104

B.Tech I Year (R09) Supplementary Examinations June 2016
 MATHEMATICS - I

(Common to all branches)
Time: 3 hours
Max. Marks: 70

Answer any FIVE questions All questions carry equal marks

1 (a) Solve : $y=\cos x \frac{d y}{d x}+y^{2}(1-\sin x) \cos x$.
(b) Solve : $\tan y \frac{d y}{d x}+\tan x=\cos y \cos ^{2} x$.

2 (a) Solve: $\left(D^{2}+5 D+6\right) y=e^{x}$.
(b) Solve: $\left(D^{2}+6 D+9\right) y=2 e^{-3 x}$.

3 (a) Verify Rolle's theorem for $f(x)=e^{-x} \sin x$ in $[0, \pi]$.
(b) Verify Rolle's theorem for $\mathrm{f}(\mathrm{x})=\sqrt{4-x^{2}}$ in $[-2,2]$.

4 (a) Find the volume generated by the revolution of the curve $27 a y^{2}=4(x-2 a)^{3}$ about x-axis.
(b) Find the volume obtained by revolving the area bounded by the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}, \mathrm{x}=0, \mathrm{y}=0$ about the x-axis.

5 (a) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1+x^{2}}} \frac{d y d x}{1+x^{2}+y^{2}}$.
(b) Change the order of integration in $1=\int_{0}^{1} \int_{x^{2}}^{2-x} x y d y d x$ and hence evaluate the same.

6 (a) Find the Laplace transform of $f(t)=t$ when $0<t<\pi$

$$
=\pi-t \quad \text { when } \quad \pi<t<2 \pi \text { with period } 2 \pi .
$$

(b) Use Heaviside's expansion formula to find $L^{-1}\left\{\frac{2 s^{2}-6 s+5}{s^{3}-6 s^{2}+11 s-6}\right\}$.

7 (a) Using Laplace transform, Solve $y(t)=1-e^{-t}+\int_{0}^{t} y(t-u) \sin u d u$.
(b) Solve the D.E. $y^{\prime \prime}+\omega^{2} y=0, y(0)=A, y^{\prime}(0)=B$. Using Laplace transform.

8 State Gauss Divergence theorem and Verify Gauss Divergence theorem for:

$$
\bar{F}=4 x \boldsymbol{i}-\mathbf{2} \boldsymbol{y}^{2} \boldsymbol{j}+\boldsymbol{z}^{2} \boldsymbol{k}, \text { over the cylindrical region bounded by } x^{2}+y^{2}=4, z=0 \text { and } z=3 \text {. }
$$

