Code: 9ABS105

R09

B.Tech I Year (R09) Supplementary Examinations June 2016
 MATHEMATICAL METHODS

(Common to CSE, ECE, EEE, EIE, ECM, E.Con.E, IT \& CSS)
Time: 3 hours
Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks
1 Verify Cayley-Hamilton theorem for the matrix A and hence Compute A^{-1} and A^{5}, given $\mathrm{A}=\left[\begin{array}{ccc}8 & -12 & 5 \\ 15 & -25 & 11 \\ 24 & -42 & 19\end{array}\right]$

Find the orthogonal transformation which transforms the quadratic form $x_{1}{ }^{2}+3 x_{2}{ }^{2}+3 x_{3}{ }^{2}-2 x_{2} x_{3}$ to canonical form and hence find the rank, index, signature and nature of the quadratic form.

3 (a) Find the root of the equation $\sin x=10(x-1)$ by iteration method.
(b) Using Lagrange's formula find the form of $f(x)$ given:

x	0	2	3	6
$f(x)$	648	704	729	792

4 The table below shows the velocities of a car at various intervals of time. Find the distance covered by the car using Simpson's $\frac{1}{3}$ rule and Simpson's $\frac{3}{8}$ rule.

Time(min)	0	2	4	6	8	10	12
Velocity(km/hr)	0	22	30	27	18	7	0

Find $y(0.4)$ by Milne's method given $\frac{d y}{d x}=y-\frac{2 x}{y}, y(0)=1$ with $h=0.1$.
6 (a) Find a Fourier series for $f(x)=x+x^{2}$ in the interval $-\pi \leq x \leq \pi$.
(b) Find the Fourier sine and cosine transform of $f(x)=\left\{\begin{array}{rr}k, & 0<x<a \\ 0 & , x>a\end{array}\right.$.
$7 \quad$ An insulated rod of length L has its ends A and B maintained at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively, until Steady state conditions prevail. If B is suddenly reduced to $0^{\circ} \mathrm{C}$, find the temperature at a distance x from A at time t.

8 (a) Find $Z\left\{(\cos \theta-i \sin \theta)^{n}\right\}$. Hence evaluate $Z(\cos n \theta)$ and $Z(\sin n \theta)$.
(b) Use convolution theorem to evaluate $Z^{-1}\left\{\left(\frac{z}{z-a}\right)^{3}\right\}$. Deduce $Z^{-1}\left\{\left(\frac{z}{z-1}\right)^{3}\right\}$.

