

Code: 9ABS105

R09

B.Tech I Year (R09) Supplementary Examinations June 2016 MATHEMATICAL METHODS

(Common to CSE, ECE, EEE, EIE, ECM, E.Con.E, IT & CSS)

Time: 3 hours

Max. Marks: 70

Answer any FIVE questions

All questions carry equal marks

- Verify Cayley-Hamilton theorem for the matrix A and hence Compute A⁻¹ and A⁵, given 1 $A = \begin{bmatrix} 8 & -12 & 5 \\ 15 & -25 & 11 \\ 24 & -42 & 19 \end{bmatrix}$
- Find the orthogonal transformation which transforms the quadratic form $x_1^2 + 3x_2^2 + 3x_3^2 2x_2x_3$ to 2 canonical form and hence find the rank, index, signature and nature of the quadratic form.
- (a) Find the root of the equation $\sin x = 10$ (x -1) by iteration method. 3
 - (b) Using Lagrange's formula find the form of f(x) given:

Х	0	2	3	6	
f(x)	648	704	729	792	

The table below shows the velocities of a car at various intervals of time. Find the distance covered 4 by the car using Simpson's $\frac{1}{3}$ rule and Simpson's $\frac{3}{8}$ rule.

	Δ^{*}							
Time(min)	0	2 4	6	8	10	12		
Velocity(km/hr)	0	22 30	27	18	7	0		

Find y(0.4) by Milne's method given $\frac{dy}{dx} = y - \frac{2x}{y}$, y(0) = 1 with h = 0.1. 5

6

- (a) Find a Fourier series for $f(x) = x + x^2$ in the interval $-\pi \le x \le \pi$. (b) Find the Fourier sine and cosine transform of $f(x) = \begin{cases} k, & 0 < x < a \\ 0, & x > a \end{cases}$.
- An insulated rod of length L has its ends A and B maintained at 0°C and 100°C respectively, until 7 Steady state conditions prevail. If B is suddenly reduced to 0° C, find the temperature at a distance x from A at time t.

(a) Find $Z\{(\cos \theta - i \sin \theta)^n\}$. Hence evaluate $Z(\cos n\theta)$ and $Z(\sin n\theta)$. 8

(b) Use convolution theorem to evaluate
$$Z^{-1}\left\{\left(\frac{z}{z-a}\right)^3\right\}$$
. Deduce $Z^{-1}\left\{\left(\frac{z}{z-1}\right)^3\right\}$.