B.Tech I Year II Semester (R15) Regular Examinations May/June 2016
 MATHEMATICS - II

(Common to all)
Time: 3 hours
PART - A
(Compulsory Question)

1
Answer the following: ($10 \times 02=20$ Marks $)$
(a) Find $L\left[t^{2} \cdot e^{t} \cdot \cos 4 t\right]$
(b) Find the Laplace Transform of $\frac{\sin 2 t}{t}$.
(c) What are Dirichlet's conditions?
(d) Express $\mathrm{f}(\mathrm{x})=x$ as a Fourier series from $-\pi$ to π.
(e) Write the formula of the Fourier cosine integral of $f(x)$.
(f) Write the formula for the inverse Fourier transform of $F(\mathrm{~s})$ in $(-\infty, \infty)$)
(g) Find the value of $Z\left(a^{n} \cos n t\right)$
(h) Find the Z-transform of the sequence $\{x(n)\}$ where $x(n)$ is $n .2^{n}$
(i) Derive a partial differential equation by eliminating the arbitrary function f from the relation:
$f\left(x^{2}+y^{2}, x^{2}-z^{2}\right)=0$
(j) Form the PDE from the relation $z=f(x+i t)+g(x-i t)$.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)
UNIT - I
Find the inverse Laplace Transform of $\frac{s}{\left(s^{2}+a^{2}\right)^{2}}$ by using Convolution theorem.

OR

Solve $\left(D^{2}-D-2\right) y=20 \sin 2 t$ where $y(0)=1, y^{\prime}(0)=2$.

UNIT-II

Find a Fourier series to represent $x-x^{2}$ from $x=-\pi$ to $x=\pi$ and deduce that $\frac{\pi^{2}}{12}=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots$

OR

If $f(x)=\frac{\pi}{3}, 0 \leq x \leq \pi / 3$
$=0, \pi / 3 \leq x \leq 2 \pi / 3$
$=-\pi / 3,2 \pi / 3 \leq x \leq \pi$
Then $f(x)=\frac{2}{\sqrt{3}}\left[\operatorname{Cos} x-\frac{1}{5} \operatorname{Cos} 5 x+\frac{1}{7} \operatorname{Cos} 7 x+\ldots.\right]$

UNIT - III

6 Show that $\int_{0}^{\infty} \frac{\sin \pi \lambda \sin \lambda x}{1-\lambda^{2}} d \lambda=\frac{\pi}{2} \sin x$, for $0 \leq \mathrm{x} \leq \pi$

$$
=0 \quad \text { for } \mathrm{x}>\pi
$$

OR

UNIT - IV

8 Find the partial differential equation of all spheres whose centre lie on Z-axis and given by equation $x^{2}+y^{2}+(z-a)^{2}=b^{2}, a$ and b being constants

> OR

A string is stretched and fastened to two points lapart. Motion is started by displacing the string in the form $y=a \sin \frac{\pi x}{l}$ from which it is released at a time $t=0$. Show that the displacement of any point at a distance x from one end at time t is given by $y(x, t)=a \sin \left(\frac{\pi x}{l}\right) \cos \left(\frac{\pi c t}{l}\right)$.

UNIT - V

Solve the difference equation, using Z-transform $u_{n+2}-u_{n}=2^{n}$, where $u_{0}=0$ and $u_{1}=1$
OR
If $f(z)=\frac{2 z^{2}+3 z+4}{(z-3)^{3}},|z|>3$, then find the values of $f(1), f(2), f(3)$.

