www.FirstRanker.com

R15

B.Tech I Year II Semester (R15) Regular Examinations May/June 2016

MATHEMATICS - II

(Common to all)

Time: 3 hours Max. Marks: 70

PART – A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Find $L[t^2.e^t.cos4t]$
 - (b) Find the Laplace Transform of $\frac{\sin 2t}{t}$
 - (c) What are Dirichlet's conditions?
 - (d) Express f(x) = x as a Fourier series from $-\pi to \pi$.
 - (e) Write the formula of the Fourier cosine integral of f(x).
 - (f) Write the formula for the inverse Fourier transform of F(s) in $(-\infty, \infty)$
 - (g) Find the value of $Z(a^n \cos nt)$
 - (h) Find the Z-transform of the sequence $\{x(n)\}$ where x(n) is $n.2^n$
 - (i) Derive a partial differential equation by eliminating the arbitrary function f from the relation: $f(x^2 + y^2, x^2 z^2) = 0$
 - (j) Form the PDE from the relation z = f(x + it) + g(x-it).

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

2 Find the inverse Laplace Transform of $\frac{s}{(s^2+a^2)^2}$ by using Convolution theorem.

OF

3 Solve $(D^2 - D - 2)y = 20 \sin 2t$ where y(0) = 1, y'(0) = 2.

4 Find a Fourier series to represent $x - x^2$ from $x = -\pi$ to $x = \pi$ and deduce that $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$

OR

5 If
$$f(x) = \frac{\pi}{3}$$
, $0 \le x \le \pi/3$
= 0, $\pi/3 \le x \le 2\pi/3$
= $-\pi/3$, $2\pi/3 \le x \le \pi$

Then
$$f(x) = \frac{2}{\sqrt{3}} \left[Cosx - \frac{1}{5} Cos5x + \frac{1}{7} Cos7x + \right]$$

Show that
$$\int_{0}^{\infty} \frac{\sin \pi \lambda \sin \lambda x}{1 - \lambda^{2}} d\lambda = \frac{\pi}{2} \sin x, \text{ for } 0 \le x \le \pi$$

$$= 0$$
 for $x > \pi$

OR

Find Fourier transform of
$$f(x) = 1 - x^2$$
 for $|x| \le 1 = 0$ for $|x| > 1$ and hence find
$$\int_0^\infty \frac{x \cos x - \sin x}{x^3} \cos \frac{x}{2} dx$$
Contd. in page 2

Code: 15A54201

www.FirstRanker.com

UNIT – IV

Find the partial differential equation of all spheres whose centre lie on Z-axis and given by equation $x^2 + y^2 + (z-a)^2 = b^2$, a and b being constants

OR

A string is stretched and fastened to two points l apart. Motion is started by displacing the string in the form $y = a \sin \frac{\pi x}{l}$ from which it is released at a time t=0. Show that the displacement of any point at a distance x from one end at time t is given by $y(x,t) = a \sin \left(\frac{\pi x}{l} \right) \cos \left(\frac{\pi ct}{l} \right)$.

UNIT - V

Solve the difference equation, using Z-transform $u_{n+2} - u_n = 2^n$, where $u_0 = 0$ and $u_1 = 1$

OF

11 If $f(z) = \frac{2z^2 + 3z + 4}{(z-3)^3}$, |z| > 3, then find the values of f(1), f(2), f(3).

www.FirstRanker.com