

Code: 9A02803

B.Tech IV Year II Semester (R09) Regular & Supplementary Examinations April 2016 MODERN CONTROL THEORY

(Electrical & Electronics Engineering)

Time: 3 hours

Max. Marks: 70

Answer any FIVE questions All questions carry equal marks

- 1 (a) Define state transition matrix and give its properties.
 - (b) An nth order liner differential equation relating the output z(t) to the input u(t) is given by: $z^n + a_1 z^{n-1} + \dots + a_{n-1} z^2 + a_n z = b_0 u^m + b_1 u^{m-1} + \dots + b_{m-1} u^2 + b_m u$ Where a's and b's are constants and the super scripts indicate the order of the derivation, obtain its phase variable canonic form.
- 2 Consider the state model of a system which is given by:

 $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -4 & -3 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \end{bmatrix} u(t)$ $z(t) = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix}$

Convert the state model to observable phase variable form.

- 3 (a) Explain the effect of state feedback on controllability and observability.
 - (b) Find the a reduced order observer for a given state model whose Eigen values are -2, -3

[1	-2	-2		[2]		
$\dot{X} = 0$	-1	1	X +	0	и	\mathcal{Q}
1	0	-1		1		3
<i>y</i> = [1	1 0]X			2	

- 4 (a) What are the various types of non-linearities that occur in control systems? What are the characteristics and effects on the operations of a control system?
 - (b) Explain describing function analysis of saturation non-linearity.
- 5 (a) What are singular points? Explain how they can be classified with the help of neat diagrams.
 - (b) Describe how method of isoclines construction is used for phase plane trajectory for a system described by: $\frac{d^r x}{dt^2} + n \phi(v)$ where $v = \frac{dx}{dt}$.
- 6 (a) Consider a non-linear system described by the equation: $\dot{X}_1 = X_2$, $\dot{X}_2 = -(1 |X_1|)X_2 X_1$. Find the region in the state plane for which equilibrium state of the system is asymptotically state.
 - (b) State and prove the Liapunov's stability theorem for linear time invariant systems.
- 7 (a) Explain how to formulate optimal control problem.
 - (b) Discuss infinite time regulator problem.
- 8 (a) Explain the fixed end point problem and derive the Euler-Lagrange equation.
 - (b) Explain about minimum principle with suitable example.

www.FirstRanker.com