B.Tech II Year I Semester (R13) Supplementary Examinations June 2016 MECHANICS OF SOLIDS

(Mechanical Engineering)
Time: 3 hours
PART - A
(Compulsory Question)

1
Answer the following: (10 $\times 02=20$ Marks $)$
(a) What is the meaning of the word 'Universal' in the universal testing machine?
(b) What is Mohr's circle and what is its significance?
(c) What is a point of inflection?
(d) If the area under the shear force diagram for a beam between two points is ' M ', then the difference between the moments at the two point is?
(e) Define Neutral plane of the beam and Neutral axis of cross-section of a beam.
(f) Define term torsional rigidity and polar moment of inertia.
(g) A simply supported beam of span 'L' and flexural rigidity El is acted upon by a concentrated load 'W' at the mid-span. The maximum deflection of beam is.
(h) Give the relationship between longitudinal and hoop stress as applicable to a thin pressure vessel.
(i) Differentiate between a thin cylinder and thick cylinder.
(j) The stress at a point in an elastic body is: (i) Scalar. (ii) Vector. (iii) Tensor. (iv) Point function.
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 A square pin is required to resist a pull of 40 kN and shear force of 15 kN . Derive a suitable section required according to strain energy theory maximum elastic stress in tension is $350 \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson ratio is 0.3 .

OR

A cylinder piece of steel 80 mm diameter and 120 mm long is subjected to an axial compression force of 500 kN . Calculate the change in the volume of the piece, if the bulk modulus $1.7 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson ratio is 0.3 .

UNIT - II

A beam $A B C D$ is supported at ' B ' and ' C ' and has overhanging $A B$ and $C D$. The bending moment diagram for this beam shown below. Determine loading diagram and SF diagram for the beam.

The diagram given below is the SF diagram for a beam which rest on two supports, one being on the left hand end. Deduce directly from the SF diagram.
(i) The BM at 2.0 m interval along the beam.
(ii) The loading on the beam and also draw loading and BMD diagrams.

UNIT - III

A rectangular beam is to be cut from a circular log of diameter 'D'. Find the ratio of breadth to depth for a strongest section in bending.

OR

The T - section shown in figure below, is subjected to a SF of $80,000 \mathrm{~N}$ at a section. Find the maximum shear stress in the section and show the variation of shear stress in the section.

20 mm
UNIT - IV
Find the maximum torque that can be applied safely to a shaft of 300 mm diameter. The permissible angle of twist is 1.5 degree in a length of 7.5 m and shear stress is not exceed $42 \mathrm{~N} / \mathrm{mm}^{2}$. Take G $=84.4 \mathrm{~N} / \mathrm{mm}^{2}$.

OR
Find the slope and deflection at the free end for a cantilever beam shown in figure below. Use moment area theorem to find slope and deflection.

A cylinder shell 90 cm long, 15 cm internal diameter having thickness of metal 8 mm is fitted with fluid at atmospheric pressure. If an additional $20 \mathrm{~cm}^{3}$ of fluid is pumped into the cylinder find the:
(i) Pressure exerted by the fluid on the cylinder.
(ii) Hoop stress induced. Take $\mathrm{E}=200 \mathrm{GPa}$ and Poisson ration $=0.3$.

OR

In a hydraulic press, the cylinder has an internal diameter of 30 cm ; the cylinder has to withstand an internal pressure of 10 MPa , without the material being stressed beyond 20 MPa . Determine the thickness of the metal and the stress on the outer surface of the thick cylinder.

