B.Tech II Year I Semester (R13) Supplementary Examinations June 2016

ELECTRONIC DEVICES & CIRCUITS

(Common to EEE, ECE & EIE)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
 - (a) Define intrinsic semi conductor, write example.
 - (b) What are the basic applications of conventional and Zener diode?
 - (c) Write the formula for β in terms of α , and in terms of γ of a NPN transistor.
 - (d) For a transistor α is 0.99, what is β ?
 - (e) List out the types of biasing techniques.
 - (f) Define thermal runaway.
 - (g) Draw the h-parameter model of CE mode.
 - (h) Write the typical values of h_{ie}, h_{fe}, h_{re} & h_{oe}.
 - (i) Define thyristor family.
 - (j) Draw the symbols of UJT and Tunnel diode.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

[UNIT – I]

- 2 (a) The leakage current through Germanium diode is $lo = 25 \mu A$, if the forward bias of $V_f = 0.2 V$, Calculate the static resistance.
 - (b) What are the various breakdown mechanisms? Explain one in detail.

OR

The Half wave rectifier circuit is supplied with a 230 V AC through 3:1 step down transformer with a resistive load of 10 KΩ, the diode forward resistance is 75 Ω and transformer secondary winding resistance 10 Ω . Calculate V_m , I_m , I_{av} , V_{av} and P_{DC} .

UNIT — II

- 4 (a) Write the current components of PNP transistor and explain.
 - (b) For a transistor the leakage current is 0.1 μA in CB configuration, while it is 19 μA when it is connected in CE configuration. Calculate α and β of the same transistor.

OR

5 Draw and explain construction and operation of Enhancement mode MOSFET with its characteristics.

UNIT – III

6 Draw the BJT self bias circuit and derive equations for I_B, I_C and V_{CE}.

OR

- 7 (a) In a fixed bias circuit a Si transistor with β = 100 is used, V_{CC} = 6 V, R_C = 3 K Ω , R_B = 530 K Ω . Draw the DC load line, determine the Q point, What is the stability factor?
 - (b) What are the advantages of self bias over other biasing techniques?

[UNIT - IV]

For a CE amplifier circuit $R_S = 1$ KΩ, $R_1 = 50$ KΩ, $R_2 = 2$ KΩ, $R_C = 1$ KΩ, $R_L = 1.2$ KΩ. Construct small signal equivalent model and Calculate A_I , A_V , R_I and R_I .

OR

- 9 (a) State and explain Millers theorem.
 - (b) A Common Emitter amplifier with collector to Base bias having $R_S = 10 \text{ K}\Omega$, $R_f = 200 \text{ K}\Omega$ and $R_C = 10 \text{ K}\Omega$. Calculate A_I , R_I , A_V . and R_I .

[UNIT – V]

With neat diagrams, explain the construction and operation of SCR with its characteristics