Code: 9A02305

R09/SS
B.Tech II Year I Semester (R09/R13) Supplementary Examinations June 2016

ELECTRICAL CIRCUITS
(Common to EEE, EIE, E.Con.E, ECE \& ECC)
Time: 3 hours
Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks
1 (a) Write a note on inductor and V-I relationship associated with it.
(b) A current $i(t)$ is applied to an inductance (L) of 2 H as shown in figure below. Find $\mathrm{V}_{\mathrm{L}}(\mathrm{t})$.

2 (a) The expressions for n resistances connected in parallel.
(b) A 20 V battery with an internal resistance of 5 ohms is connected to a resistor of x ohms. If an additional resistance of 6 ohms is connected across the battery, find the value of x so that the external power supplied by the battery remains the same.

3 (a) What is the concept of effective value of an alternating quantity? What is its practical significance?
(b) A series $R L$ circuit has $R=25$ ohm and $X_{L}=32$ ohm. It is connected in parallel to a capacitor of 100 micro farads and the combination is connected across a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find the current in each branch. Draw the vector diagram showing the total current.

4 (a) Give the expression of frequency at which the voltage across the capacitor is maximum.
(b) A RC series circuit with $\mathrm{R}=50 \mathrm{ohms}$ and $\mathrm{C}=20$ micro farads is connected parallel to an inductance. The parallel combination is excited by a source of $10 \mathrm{~V}, 1 \mathrm{kHz}$. Determine the value of inductance if no reactance current is taken from the supply.

5 (a) Derive the expression for equivalent inductance of two coils connecting in series aiding.
(b) For the network shown in figure below, find the drop across load resistance R_{L}.

Contd. in page 2

Code: 9A02305

6 (a) Explain the concept of duality.
(b) With the help of nodal analysis, find power dissipated by all the resistors in the circuit shown below.

7 (a) Write limitations of maximum power transfer theorem.
(b) Using suitable theorem, calculate voltage across Z_{L} for the circuit shown.

8 Find the current through ($4+\mathrm{j} 6) \Omega$ impedance using superposition theorem and verify it using mesh analysis.

