R09

Code: 9A04304

Max. Marks: 70

B.Tech II Year I Semester (R09) Supplementary Examinations June 2016
 SIGNALS \& SYSTEMS
 (Common to EIE, E.Con.E, ECE \& ECC)

Time: 3 hours
Answer any FIVE questions
All questions carry equal marks

1 (a) The two periodic functions $f_{1}(t)$ and $f_{2}(t)$ with zero dc components have arbitrary waveforms with periods T and $\sqrt{2 T}$ respectively. Show that the component in $f_{1}(t)$ of waveform $f_{2}(t)$ is zero in the interval $T_{1}<t<T_{2}$.
(b) State the properties of impulse function.

2 (a) Derive polar Fourier series from the exponential Fourier series representation and hence prove that $D_{n}=2\left|C_{n}\right|$.
(b) Show that the magnitude spectrum of every periodic function is symmetrical about the vertical axis passing through the origin.

3 Find the Fourier Transform of the following function:
(a) A Single Symmetrical Triangular pulse.
(b) A Single Symmetrical Gate Pulse.
(c) A Single Cosine Wave at $\mathrm{t}=0$.

4
The output $\mathrm{y}(\mathrm{t})$ of a causal LTI system is related to the input by the equation:

$$
\frac{d y(t)}{d t}+10 y(t)=\int_{-w}^{w} x(\tau) z(t-\tau) d \tau-x(t) \text { where } z(t)=e^{-t} u(t)+3 \delta(t)
$$

(a) Find the frequency response of this system $\mathrm{H}(\mathrm{w})$.
(b) Determine the impulse response of this system.

5 (a) State sampling theorem for low pâss signals and band pass signals.
(b) What is aliasing effect? How it can be eliminated? Explain with neat diagram.

6 (a) Find the average autocorrelation function of the sinusoidal wave: $x(t)=A \operatorname{Sin}(w t+\gamma)$ where $w=2 \pi / T$.
(b) Determine the output of an LTI system whose input and unit sample response are given as follows: $x(n)=b^{n} u(n)$ and $h(n)=a^{n} u(n)$.

7 (a) State and Explain ROC property of Laplace transform if $x(t)$ is two sided.
(b) Find the Laplace Transform of the signal $x(t)=e^{-|b| t}$.

8 (a) What are the methods by which inverse Z- transformation can be found out?
(b) Given $X(z)=\frac{1}{\left(1-a z^{-1}\right)},|z|>|a|$. Find $x[\mathrm{n}]$ using long division method.

