

B.Tech II Year II Semester (R13) Regular & Supplementary Examinations May/June 2016

STRENGTH OF MATERIALS – II

(Civil Engineering)

Time: 3 hours

Τ – Α

Max. Marks: 70

PART – A (Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
 - (a) State the assumptions made for developing torsion equation.
 - (b) Define the state of plane stress at a point.
 - (c) What is generalized Hook's law?
 - (d) What are the various theories of failure?
 - (e) Define cumulative fatigue damage.
 - (f) Define point of contraflexure.
 - (g) What is strain energy?
 - (h) What is hogging and sagging of beams?
 - (i) State the Castigliano's theorem.
 - (j) What is modulus of resilience?

PART – B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

A compound bar of length 500 mm consists of a strip of aluminum 50 mm wide \times 20 mm thick and a strip of steel 50 mm wide \times 15 mm thick rigidity joined at ends. If the bar is subjected to a load of 50 kN, find the stresses developed in each material and the extension of the bar. Take elastic modulus of aluminum and steel as 1 \times 10⁵ N/mm² and 2 \times 10⁵ N/mm² respectively.

OR

3 Derive the expression for Maximum Energy Theory.

UNIT – II

4 The stress component at a point are given by $\sigma_x = 10$, $\sigma_y = 15$, $\zeta_{xy} = 10$, $\zeta_{yz} = 20$ MPa. Calculate the strain components. Assume E = 200 GPa and $\eta = 0.25$.

OR

5 A thick cylinder of external and internal diameter of 300 mm and 180 mm is subjected to an internal pressure of 42 N/mm² and external pressure 6 N/mm². Determine the stresses in the material. Now if the external pressure is doubled, what internal pressure can be maintained without exceeding the previously determined maximum stress?

(UNIT – III)

6 Derive the equation for torsional moment.

OR

7 Derive the equation for closed coiled helical springs of radium R subjected to an axial load.

UNIT – IV

- 8 (a) What are the limitations of Euler's theory?
 - (b) Derive the Euler's equation for the condition both ends are fixed.

OR

9 A built up section has an overall depth of 400 mm, width of flanges 50 mm and web thickness 30 mm. It is used as a beam with simply supported ends and it deflects by 10 mm when subjected to a load of 40 kN/m length. Find the safe load if this I-section is used as a column with both ends hinged. Use Euler's formula. Assume a factor of safety 1.75 and take $E = 2 \times 10^5$.

UNIT – V

10 Derive graphical solution for Mohr's stress circle.

OR

- 11 (a) A circular bar 40 mm diameter carries an axial tensile load of 105 kN. What is the value of shear stress on the planes on which the normal stress has a value of 50 MN/m² tensile?
 - (b) What are the salient features of Normal Stiest Ranker.com