B.Tech II Year II Semester (R09) Supplementary Examinations May/June 2016

STRUCTURAL ANALYSIS - I

(Civil Engineering)
Time: 3 hours
Max. Marks: 70

Answer any FIVE questions
 All questions carry equal marks *****

1 A beam $A B$ of uniform section and 6 m span is fixed at the ends. The loading of beam as shown in figure below. Determine fixing moments at ends and draw bending moment and shear force diagram.

2 A continuous beam is loaded as shown in figure below. The support B sinks by 30 mm . Calculate the support moments and draw bending moment diagram by using theorem of three moments. The values of E and I are 200 GPa and $0.2 \times 10^{9} \mathrm{~mm}^{4}$ respectively.

3 A continuous beam $A B C D$ over three spans $A B=6 \mathrm{~m}, \mathrm{BC}=4 \mathrm{~m}$ and $C D=6 \mathrm{~m}$. The beam $A B$ and $B C$ is subjected to UDL of $1.5 \mathrm{kN} / \mathrm{m}$, where as there is central load of 5 kN in CD. The end A and D is fixed at both ends. Analyze the structure by slope deflection method. Draw bending moment diagram.

A beam $A B C D$ is continuous over three spans $A B=8 \mathrm{~m}, \mathrm{BC}=4 \mathrm{~m}$ and $C D=8 \mathrm{~m}$. The beam $A B$ and $B C$ is subjected to UDL of $1.5 \mathrm{kN} / \mathrm{m}$, where as there is a central load of 4 kN in CD. The moment of inertia of $A B$ and $C D$ is $2 I$ and that of $B C$ is I. The ends A and D are fixed. During loading the support A sinks down by 10 mm . Find the fixed end moments and draw bending moment diagram. Use moment distribution method.

5 Determine the horizontal component of deflection of joint F of the frame shown in figure below. The area of cross section of all the members is $1250 \mathrm{~mm}^{2}$ and $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$.

6 (a) Two point loads of 40 kN and 60 kN spaced 6 m apart cross a girder of 16 m span with 40 kN load leading from left to right. Construct the maximum bending moment diagram stating the absolute maximum values.
(b) A uniformly distributed load of $15 \mathrm{kN} / \mathrm{m}$ covering a length of 3.5 m cross a girder of span 10 m . Find the maximum shear force and bending moment at a section 4 m from left hand support.

7 (a) The span of simply supported bridge is 30 m and is crossed from left to right by a train of four loads of magnitude 10, 15, 25 and 20 kN leading load and distance them are $1.2 \mathrm{~m}, 1 \mathrm{~m}$ and 0.6 m respectively. Calculate the maximum bending moment and shear force at section 8 m from left end.
(b) A girder simply supported has a span of 25 m . A uniformly distributed load of intensity $20 \mathrm{kN} / \mathrm{m}$ and 5 m long cross the girder. Find the maximum shear force 8 m from left support.

8 Analyze the continuous beam shown in figure below by Castigliano's second theorem.

