

B.Tech III Year I Semester (R13) Supplementary Examinations June 2016

LINEAR IC APPLICATIONS

(Electronics and Communication Engineering)

Time: 3 hours

PART – A

Max. Marks: 70

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - Define differential amplifier. (a)
 - Draw the op-amp equivalent circuit. (b)
 - Write the properties of ideal op-amp. (C)
 - What is the compensating network? (d)
 - Draw the op-amp integrator circuit. (e)
 - Write about the first order and second order filter. (f)
 - How the name implies 555 timers. (g)
 - Write the applications of PLL. (h)
 - Write the disadvantage of weighted resistor DAC. (i)
 - List out the ADC techniques. (j)

PART – B

(Answer all five units, $5 \times 10 = 50$ Marks)

[UNIT – I]

- (a) List and compare the different configurations of differential amplifier. 2
 - What is level translator? Explain the necessity of level translator stage in cascading differential amplifiers. (b)

OR

- 3 Explain the term slew rate and write the importance in op-amp circuits. (a)
 - For the given dual-input, balanced-output differential amplifier $R_c = 2.2 \text{ k}\Omega$, $R_E = 4.7 \text{ k}\Omega$, $R_{in1} = R_{in2} =$ (b) 50 Ω , V_{CC} = +10 V, V_{EE} = -10 V, $\beta_{DC} = \beta_{AC} = 100$ and $V_{BE} = 0.71$ V, determine I_{CQ}, V_{CEQ}, r_{e.} voltage gain, input and output resistances.

- 4 (a) Compare voltage series and voltage shunt feedback circuits.
 - Derive the expression for closed-loop gain. (b)

OR

- 5 Write the difference between compensating and uncompensating networks. (a)
 - The op-amp non-inverting amplifier has the following parameters $R_1 = 1 k\Omega$, $R_f = 10 k\Omega$, A = 2,00,000, (b) $R_i = 2 M\Omega$, $R_o = 75 \Omega$, supply voltages $V_{CC} = +15 V$, $V_{EE} = -15 V$. Determine A_f , $R_{if} \& R_{of.}$

(UNIT – III)

6 (a) Derive the expression for 3 input summing amplifier with circuit diagram.

What is the need of Current to Voltage Converter? (b)

OR

- The op-amp non-inverting summing circuit has the following parameters V_{CC} = +15 V, V_{EE} = -15 V, R = R₁ 7 (a) = 1 k Ω , R_f = 2 k Ω , V₁ = +2 V, V₂ = -3 V, V₃ = +4 V. Determine the output voltage V₀.
 - (b) Write the design steps of the second order low pass filter and draw its circuit.

UNIT – IV

Draw and explain the operation of Wein bridge oscillator and write its frequency expression 8

OR

- How to design the function generator 9 (a)
 - The monostable circuit used as divide by 2 network. The input frequency of trigger signal is 2 kHz if (b) $C = 0.01 \mu F$, calculate the value of R_{A} .

UNIT – V

OR

- Draw and explain the successive approximation ADC 10____
- 11 Draw and explain in detail about Rwarva Fürst Ranker.com