

Max. Marks: 70

B.Tech III Year I Semester (R13) Supplementary Examinations June 2016

DIGITAL IC APPLICATIONS

(Electronics and Communication Engineering)

Time: 3 hours

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Classify the logic family by operation.
 - (b) Which is the fastest logic gate? And why?
 - (c) What is the necessity of simulation? Mention different types of simulation.
 - (d) Explain primary constructs in VHDL?
 - (e) List the applications of multiplexers and demultiplexers.
 - (f) Why totem pole outputs cannot be connected together?
 - (g) What is race around condition?
 - (h) Define setup time and hold time.
 - (i) Define PLD. Give its classification.
 - (j) Define ROM and programmable logic array. Differentiate them.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

[UNIT - I]

- 2 (a) What is the necessity of separate interfacing circuit to connect CMOS gate to TTL gate? Draw the interface circuit and explain the operation.
 - (b) Explain how a CMOS device is destroyed.

OR

- 3 (a) Discuss about CMOS dynamic electrical behavior with characteristics.
 - (b) Mention the DC noise margin levels of ECL 10K family.

UNIT - II

- 4 (a) Explain the difference in program structure of VHDL and any other procedural language. Give an example.
 - (b) Explain the behavioural design model of VHD

OF

- 5 (a) Write a process based VHDL program for the prime-number detector of 4-bit input and explain the flow using logic circuit.
 - (b) What is the importance of time dimension in VHDL? Explain its function.

[UNIT – III]

- 6 (a) Design a 10 to 4 encoder with inputs 1- out of 10 and outputs in BCD. Provide the data flow style VHDL program.
 - (b) Explain about combinational multipliers.

OR

- 7 (a) Design a full subtractor with logic gates and write VHDL data flow program for the implementation of the above subtractor.
 - (b) Describe three state devices.

UNIT – IV

- 8 (a) Describe dual parity encoder.
 - (b) Design a conversion circuit to convert a D flip-flop to J-K flip-flop? Write data-flow style VHDL program.

ΩŔ

- 9 (a) Design an 8-bit serial-in and parallel-out shift register with flip-flops. Explain the operation with the help of timing waveforms.
 - (b) Write VHDL data-flow program for the above shift-register.

[UNIT - V]

- 10 (a) Explain the internal structure of 64Kx1 DRAM. With the help of timing waveforms discuss DRAM access.
 - (b) Explain the functional behavior of Static RAM cell.

ΩR

- 11 (a) With the help of timing waveforms, explain read and write operations of static SRAM.
 - (b) Discuss how PROM, EPROM and EEPROM technologies differ.