

B.Tech III Year II Semester (R09) Supplementary Examinations May/June 2016

OPTIMIZING TECHNIQUES

(Common to CSE and CSS)

Time: 3 hours Max. Marks: 70

Answer any FIVE questions All questions carry equal marks

1 Determine the minimum of:

$$f(x) = (10x^3 + 3x^2 + x + 5)^2$$

Starting at x = 2 and using a step size $\Delta = 0.5$ using quadratic point estimation method.

- Minimize $f = 2x_1^2 + x_2^2$ by using the Cauchy method with the starting point (1, 2) (two iterations only).
- 3 Solve the following LP problem using graphical method and give your comment on the result:

Maximize
$$Z = 40 X_1 + 100 X_2$$

Subject to $2 X_1 + X_2 \le 500$
 $2 X_1 + 5 X_2 \le 1000$
 $X_1, X_2 \ge 0$

Find the optimal solution for the following transportation problem. The cell entries represent the unit transportation cost in rupees from each origin to each destination.

			Destir	nation		
		D_1	D_2	D_3	D_4	Availability
Origin	O_1	1	2	1	4	20
	O_2	3	3	2	10	40
	O_3	4	2	5	9	20
	O_4	5	3	6	10	20
Dema	nd	4	7	6	13	

Write the Kuhn-Tucker conditions for the following problem and solve it:

Minimize
$$Z = x_1^2 + x_2^2 + x_3^2$$

subject to constraints: $2x_1 + x_2 \le 5$
 $x_1 + x_3 \le 2$
 $1-x_1 \le 0$
 $2-x_2 \le 0$
 $x_3 \ge 0$

- What is penalty function concept? Explain interior penalty function algorithm.
- 7 (a) Explain the concepts of "branching" and "bounding" used in the branch and bound algorithm.
 - (b) What is the meaning "Fathoming" a node? Under what conditions can a node be fathomed in the branch and bound algorithm?
- Draw the network diagram from the following activities and find critical path and total float and free float of activities.

Job		В	С	D	Е	F	G	Н	I	J	K
Job time	13	8	10	9	11	10	8	6	7	14	18
Immediate predecessor	-	Α	В	С	В	Е	D, F	Е	Н	G, I	J