Code: 9A01101

Answer any FIVE questions
All questions carry equal marks
1 (a) State and prove Lami's theorem.
(b) State and prove theorem of varignon.

2 (a) Explain just rigid frame and over rigid frame.
(b) Explain the types of frames with neat sketches.

3 A screw jack raises a load of 40 kN . The screw is square threaded having 3 threads per 20 mm length and 40 mm in diameter. Calculate the force required at the end of a lever 400 mm long measured from axis of screw, if coefficient of friction between screw and nut is 0.12 .

A steel cylinder of diameter 200 mm and height of 300 mm rests centrally over a concrete rectangle of $1000 \times 800 \times 600 \mathrm{~mm}$ size. Determine the center of gravity of the system, taking weight of concrete $=28500 \mathrm{~N} / \mathrm{m}^{2}$ and that of steel $81000 \mathrm{~N} / \mathrm{m}^{2}$.

A square prism of cross section $200 \mathrm{~mm} \times 200 \mathrm{~mm}$ and height 400 mm stands vertically and centrally over a cylinder of diameter 300 mm and height 500 mm . Calculate the mass moment of inertia of the composite solid about the vertical axis of symmetry, if the mass density of the material is $2000 \mathrm{~kg} / \mathrm{m}^{3}$.

6 (a) The velocity of a particle is $v=v_{0}[1-\operatorname{Sin}(\pi t / T)]$. The particle starts from the origin with an initial velocity v_{0}, Determine: (i) Its position and acceleration at $t=4 \mathrm{~T}$.
(ii) Its average velocity during the interval $\mathrm{t}=0$ to $\mathrm{t}=\mathrm{T}$.
(b) The motion of a rotor is defined by the relation $\theta=8 t^{3}-6(t-2)^{2}$, where θ and t are expressed in radians and seconds respectively. Determine: (i) When the angular acceleration is zero. (ii) The angular coordinate and angular velocity at that time.

7 Two identical springs of spring constant $\mathrm{K}=0.2 \mathrm{~N} / \mathrm{mm}$ is attached with a ball of mass $\mathrm{m}=0.75 \mathrm{~kg}$ as shown in figure below. If the ball is initially displaced from its middle position by an amount 1 mm to the right, determine the period of oscillation of the ball and the velocity with which the ball passes its middle position. Assume the contact surfaces are frictionless.

8 A small ball of weight ' w ' is attached to the middle of a tightly stretched perfectly flexible wire AB of length ' $2 l$ 'connected between two horizontal rigid surfaces (arrangement is vertical) Prove that for small lateral displacements and high initial tension in the wire, the ball will have a SHM, and calculate the period of oscillation.

