

Code: 13A02101

B.Tech I Year (R13) Supplementary Examinations June 2017

ELECTRICAL CIRCUITS

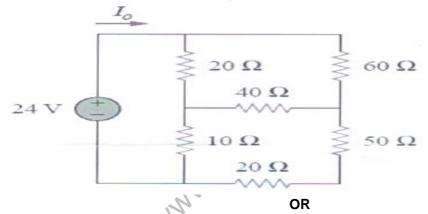
(Electrical and Electronics Engineering)

Time: 3 hours

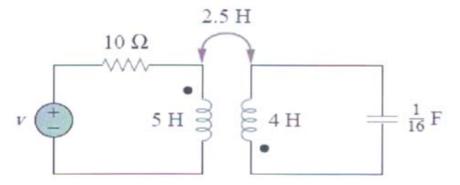
Max. Marks: 70

PART - A

(Compulsory Question)

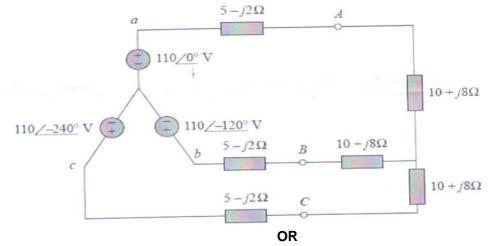

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) An energy source forces a constant current of 2 A for 10 sec to flow through a light bulb. If 2.3 kJ is given off in the form of light and heat energy. Calculate the voltage drop across the bulb.
 - (b) Derive the expression for the energy in the coupled circuit.
 - (c) For a sinusoidal waveform define form factor, average value and RMS value.
 - (d) Find the amplitude, phase, period and frequency of the sinusoid $V(t) = 12\cos(50t + 10^\circ)$.
 - (e) Derive the expression for the resonant frequency for a series resonant circuit.
 - (f) Define graph, tree, cutset and Tieset with an example.
 - (g) State Thevenin and Nortons theorems.
 - (h) What are h-parameters? Explain them briefly with derivation.
 - (i) Determine the Laplace transform of each of the following functions:
 - (i) u(t). (ii) $e^{-at}u(t)$, $a \ge 0$.
 - (j) State the differentiation theorem of Fourier transform.

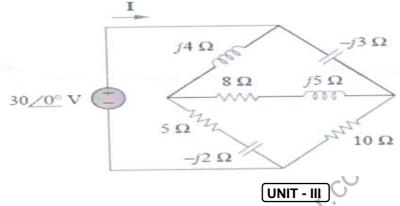
PART - B


(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

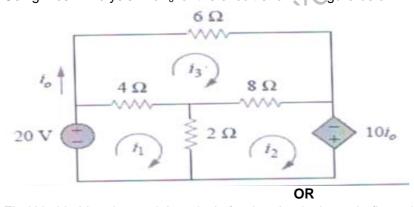
[UNIT - I]

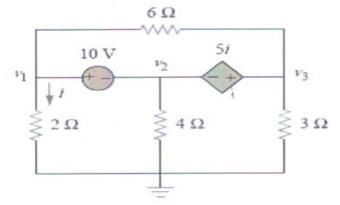
2 Calculate I_0 for the circuit shown in figure below.


Consider the circuit shown in figure below. Determine the coupling coefficient calculate the energy stored in the coupled inductors at time t = 1 sec, if $V = 60 \cos(4t + 30^\circ)V$.

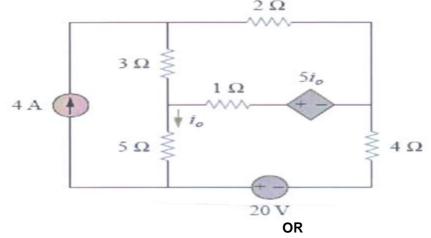

Contd. in page 2

UNIT - II


4 Refer to the circuit shown in figure below. Calculate the average active power and reactive power at source and the load.

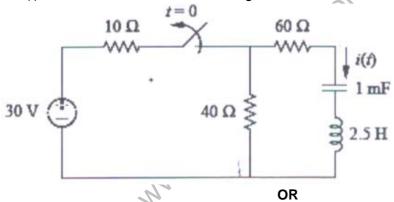

5 Determine the current I for the circuit shown in figure below.

6 Using Mesh Analysis find I₀ for the circuit shown in figure below.


Find V₁, V₂, V₃ using nodal analysis for the circuit shown in figure below.


www.FirstRank

UNIT - IV


8 Find I₀ for the circuit shown in figure below, using Superposition theorem.

9 Determine z-parameters for the circuit shown in figure below.

10 Find i(t) for t > 0 for the circuit shown in figure below.

- Determine the Fourier transform for the following functions:
 - (a) Gate function u(t) u(t-1).
 - (b) $f(t) = te^{-2t}u(t)$.
