



B.Tech I Year II Semester (R15) Regular & Supplementary Examinations May/June 2017

# **NETWORK ANALYSIS**

(Common to ECE & EIE)

Max. Marks: 70

Time: 3 hours

1

PART – A

(Compulsory Question)

\*\*\*\*\*

- Answer the following:  $(10 \times 02 = 20 \text{ Marks})$ 
  - (a) Write short notes on source transformation.
  - (b) State Kirchhoff's laws.
  - (c) When an inductor is connected in a circuit, what is the status of inductor under steady state condition? Draw the equivalent circuit?
  - (d) When a capacitor is connected in a circuit, what is the status of capacitor under steady state condition? Draw the equivalent circuit?
  - (e) Define power factor and complex power.
  - (f) Define impedance and apparent power.
  - (g) What is the power factor in the series R-L-C circuit at resonance? What is the reason for that?
  - (h) What is Q-factor?
  - (i) Define hybrid parameters.
  - (j) Draw constant-k low pass filter (proto type).



- 2 (a) State and explain Millman's theorem.
  - (b) By using Thevenin's theorem, determine the current through 5  $\Omega$  resistor (All resistances are in  $\Omega$ ) as shown in figure.





- 3 (a) State and explain Maximum power transfer theorem.
  - (b) By using loop analysis find the current flowing through 5 ohms resistor.



www.FirstRanker.com



# UNIT – II

In the circuit shown below, V = 10 V, R = 10  $\Omega$ , L = 1H and C = 10  $\mu$ *F*. The capacitor is initially uncharged. The switch is closed at t = 0. Determine  $i(0^+)$ ,  $\frac{di}{dt}(0^+)$  and  $\frac{d^2i}{dt^2}(0^+)$ . And also derive the formulae used.



5 In the circuit shown below, L= 1H, R = 6  $\Omega$  and C = 0.2F. The capacitor is initially charged to 24 V and the switch is closed at t = 0. Determine the expression for i(t) and the value of current at one second after the switch is closed. And also derive the formulae used.



- 6 (a) Show that the power dissipated by a pure, capacitor excited by a sinusoidal voltage source is zero.
  - (b) A series circuit consisting of a 10  $\Omega$  resistor, a 100  $\mu$ *F* capacitance and a 10mH inductance is driven by a 50 Hz AC voltage source of maximum value 100 V. Calculate the equivalent impedance, current in the circuit, the power factor and power dissipated in the circuit.

#### OR

- 7 (a) Derive the expression for instantaneous power when a series R-L circuit excited by a sinusoidal source.
  - (b) A series circuit to which 100 V is applied, consists of a 10  $\Omega$  resistance, a 5  $\Omega$  condenser and a resistor R in which 50 watts are lost and a reactance X<sub>L</sub> which absorbed a reactive power of 100 VAR. Calculate the values of R and X<sub>L</sub> that satisfy the stated conditions.

### UNIT – IV

8 (a) Explain in detail about linear transformer.

Code: 15A

(b) Show that  $Q_0 = \omega_0 L/R = f_0/BW$  for a series RLC circuit.

#### OR

- 9 (a) Show that the resonant frequency  $\omega_0$  of an RLC series circuit is the geometric mean of  $\omega_1$  and  $\omega_2$ , the lower and upper half power frequencies respectively.
  - (b) Given a series RLC circuit with R = 100 ohms, L = 0.5H and C = 40  $\mu$ F. Calculate the resonant, lower and upper half power frequencies.

## UNIT – V

- 10 (a) Define and explain short circuit parameters by taking one example.
  - (b) A low pass  $\pi$  section filter consists of an inductance of 25mH in the series arm and two capacitors of 0.2  $\mu$ *F* in the shunt arms. Calculate the cut off frequency, design impedance, attenuation at 5 kHz and phase shift at 2 kHz. Also find the characteristic impedance at 2 kHz.

# OR

- 11 (a) Derive the relation between transmission and impedance parameters.
  - (b) A T-section low pass filter has an inductance of 30mH in each of the series arms and a shunt arm capacitance of  $0.25 \,\mu$ F. Calculate the cut off frequency, characteristic impedance, ratio of input, output voltages and phase shift at: (i) 1 kHz. (ii) 5 kHz.