

Code: 9A21702

R09

B.Tech IV Year I Semester (R09) Supplementary Examinations June 2017

VIBRATIONS & STRUCTURAL DYNAMICS

(Aeronautical Engineering)

Time: 3 hours Max. Marks: 70

> Answer any FIVE questions All questions carry equal marks

- (a) Explain the D'Alembert's principle.
 - (b) Determine the effective stiffness of combined spring system shown in figure below and write the equation of motion for two spring mass system.

- (a) Derive the equation of motion for un-damped free vibration. 2
 - (b) Explain the various devices for vibration measuring.
- Derive the dynamic equation of general elastic bodies. 3
- Derive the expression for the longitudinal vibration of a uniform bar of length 'L', one end of which is 4 fixed and the other end is free and determine the fundamental frequency and draw the mode of vibration.
- (a) Describe the whirling speed of light vertical shaft with single disc of without damping with a neat diagram.
 - (b) Describe the whirling speed of light vertical shaft with single disc of with damping with a neat diagram.
- 6 Determine the stiffness, max and damping matrices using Rayleigh Ritz method for the given system shown in figure below. Given $k_1 = 300$ N/m, $k_2 = 500$ N/m, $k_3 = 200$ N/m, $m_1 = 2$ kg and $m_2 = 1$ kg.

- 7 Derive the global stiffness matrix for cantilever beam.
- 8 Using Fourier analysis, determine the discrete Fourier spectrum for triangular pulse.