B.Tech II Year I Semester (R09) Supplementary Examinations June 2017
 MECHANCIS OF SOLIDS
 (Common to AE, ME \& MCT)

Time: 3 hours
Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 (a) Draw the stress-strain diagram for mild steel, brittle material and ductile material and indicate the salient features.
(b) A steel bar 25 mm diameter is loaded as shown in figure below. Determine the stresses in each part and total elongation. $\mathrm{E}=210 \mathrm{GPa}$.

2 A horizontal girder which is freely supported at its ends and has a span of 9 m supports a uniformly distributed load of $20 \mathrm{kN} / \mathrm{m}$ run over the whole span and also two concentrated loads of 30 kN and 40 kN at points 6 m and 7.5 m respectively from the left support. Draw the bending moment and shearing force diagrams and state the values of the maximum bending moment and maximum shear force.

3 (a) What are the assumptions made in the theory of simple bending?
(b) Derive the equation for the simple bending of the beam.

A cast iron bracket subjected to bending has a cross-section of I-shape with unequal flanges as shown in figure below. If the tensile stress in top flange is not to exceed 17.5 MPa , what is the bending moment the section can take? If the section is subjected to a shear force of 1 kN , draw the shear distribution over the depth of the section.

Contd. in page 2

5 (a) Derive the relation for a circular shaft when subjected to torsion as given below.

$$
\frac{T}{J}=\frac{\tau}{r}=\frac{G \theta}{l}
$$

(b) A solid shaft is to transmit 300 kW at $100 \mathrm{r} . \mathrm{p} . \mathrm{m}$. If the shear stress is not to exceed 80 MPa , find the diameter of the shaft. What percent saving in weight would be obtained if this shaft were replaced by a hollow one whose internal diameter equals 0.6 of the external diameter, the length, material and maximum shear stress being the same?

6 (a) A beam $A B$ of span 5 m is simply supported at A and B. A cantilever DC of length 3 m which is fixed at D meets the beam $A B$ at mid-point C, there by forming a rigid joint at C. A vertical load of 200 kN is applied vertically at common joint C. Find out reactions at ends of simply supported beam.
(b) A beam $A B$ simply supported at the ends is 4 m long. It carries a uniformly distributed load of intensity $20 \mathrm{kN} / \mathrm{m}$ over a length of 2 m starting at a distance of 1 m from left end support together with a concentric load 40 kN at a distance of 3 m from the left end support. Calculate the deflection at the centre, if $E=210 \mathrm{GPa}, \mathrm{I}=9600 \mathrm{~m}^{4}$.

7 (a) Derive an expression for hoop stress and longitudinal stress in a thin cylinder with ends closed by rigid flanges and subjected to an internal fluid pressure p . Take the internal diameter and shell thickness of the cylinder to be d and t respectively.
(b) Derive from the first principles the expressions for circumferential and longitudinal stresses in a thin cylinder closed at both ends and subjected to internal fluid pressure.

8 (a) A thick cylinder of inner radius 10 cm and outer radius 15 cm is subjected to an internal pressure of 12 MPa . Determine the radial and hoop stresses in the cylinder at the inner and outer surfaces.
(b) A steel tube, which has an outside diameter of $10^{\circ} \mathrm{cm}$ and inside diameter of 5 cm , is subjected to an internal pressure of 14 MPa and an external pressure of 5.5 MPa . Calculate the maximum hoop stress in the tube.

