B.Tech II Year I Semester (R09) Supplementary Examinations June 2017

STRENGTH OF MATERIALS - I
(Civil Engineering)
Time: 3 hours
Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks
1 (a) Define the following:
(i) Elasticity
(ii) Plasticity
(iii) Hooke's law
(iv) Poisson's ratio.
(b) A member formed by connecting a steel bar to an aluminium bar as shown in figure below. Assuming the bars are prevented from buckling sideways, calculate the magnitude of force " P " that will cause the total length of member to decrease 0.25 mm . The values of elastic modulus of steel \& aluminium are $2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $7 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$ respectively.

(c) A steel bar of 300 mm long, 50 mm wide \& 40 mm thick is subjected to pull of 300 kN in direction of its length. Determine the change in volume. Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mu=0.25$.

2 (a) Define the following:
(i) Shear force
(ii) Bending moment
(iii) Point of contraflexure (iv) Shear force diagram.
(v) Bending moment diagram.
(b) Draw the shear force \& bending moment diagram for overhanging beam \& also locate the point of contraflexure for the given below.

3 (a) Mention the assumptions made by the theory of simple bending.
(b) A cost iron beam is of T section as shown in figure below. The beam is simply supported on span of 8 m . The beam carries a UDL of $1.5 \mathrm{kN} / \mathrm{m}$ for the entire span. Determine the maximum tensile \& compression stresses.

4 (a) Derive the expression for maximum shear stress in a circular section.
(b) A rectangular beam 100 mm wide \& 250 mm deep, subjected to maximum shear force of 50 kN . Determine:
(i) Average shear stress.
(ii) Maximum shear stress.
(iii) Shear stress @ distance of 25 mm above neutral axis.

5 (a) Derive an expression for slope \& deflection for a cantilever beam subjected to UDL of $10 \mathrm{kN} / \mathrm{m}$ over the entire span by using double integration method.
(b) A cantilever of length 3 m carrier a point load of 25 kN at free end. If the moment of inertia of beam is $10^{8} \mathrm{~mm}^{4} \& E=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. Find: (i) Slope at free end. (ii) Deflection at free end.

Determine the slope \& deflection at mid span \& also under the loads in simply supported beam using moment area method.

For the given figure below.
Determine: (i) Magnitude of principal stress.
(ii) Direction of principal planes.
(iii) Magnitude of maximum shear stress.
(iv) Magnitude of normal, tangential \& resultant stresses.

8 Determine the diameter of a bolt which is subjected to axial pull of 9 kN together with a transverse shear force of 4.5 kN using maximum principal strain theory.
Given: Elastic limit in tension $=225 \mathrm{~N} / \mathrm{mm}^{2}$
Factor of safety $=3$
Poisson's ratio $=0.3$.

