Code: 9A01304

B.Tech II Year I Semester (R09) Supplementary Examinations June 2017

FLUID MECHANICS
(Civil Engineering)
Time: 3 hours
Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 (a) Explain about Diaphragm gauges along with neat sketch.
(b) Explain about Bellow gauges along with neat sketch.

2 A circular gate in a vertical wall has a diameter of 8 m . The water surface on the upstream side is 16 m above the top of the gate and on the downstream side 2 m above the top of the gate. Find the forces acting on the two sides of the gate and the resultant force acting on the gate and its location.

3 (a) Velocity for a two dimensional flow field is given by $\mathrm{V}=\left(6+2 x y+t^{2}\right) i+\left(x y^{2}+10 t\right) j+25 k$. Find the acceleration of a particle at $(3,0,2)$ at time $t=1$.
(b) Explain about Path line.

4 A pipe line, 600 mm diameter carrying oil of specfic gravity 0.85 at the flow rate of 1800 lit/s has a 90° bend in the horizontal plane. The pressure at the entrance to the bend is 1.471 bars and loss of head in the bend is 2 m of oil. Find the magnitude and direction of the force exerted by the oil on the bend.

5 Prove that the momentum thickness and energy thickness for boundary layer flows are given by $\theta=\int_{0}{ }^{\delta} u / U(1-u / U)$.dy and $\delta^{* *}={ }_{0} \int^{\delta} u / U\left(1-u^{2} / U\right) . d y(M)$

6 An oil of viscosity 10 poise flows between two parallel fixed plates which are kept at a distance of 50 mm apart. Find the rate of flow of oil between the plates if the drop of pressure in a length of 1.2 m be $0.3 \mathrm{~N} / \mathrm{cm}^{2}$. The width of the plates is 200 mm .

7 (a) Explain variation of friction factor with Reynold's number.
(b) Explain Hydraulic gradient line and total energy lines.

8 (a) Mention the advantages and limitations of an orifice as a flow metering device.
(b) An orifice plate of diameter 10 cm has been fitted into a 25 cm diameter pipe that conveys oil of specific gravity 0.8 . The pressure difference on the two sides of the orifice plate is measured by a mercury-oil differential manometer .If the gauge shows a deflection of 80 cm of mercury, calculate the oil discharge in liters per second. Take coefficient of discharge $\mathrm{C}_{\mathrm{d}}=0.65$.

