

Code: 13A04304

Time: 3 hours

1

B.Tech II Year I Semester (R13) Supplementary Examinations June 2017 **PROBABILITY THEORY & STOCHASTIC PROCESSES**

(Electronics & Communication Engineering)

Max. Marks: 70

PART - A

(Compulsory Question)

Answer the following: (10 X 02 = 20 Marks)

- (a) Define probability of the event with an example.
- (b) Determine the value of K, such that the given density function is valid $f_X(x) = K$, a < x < b

0, elsewhere

- (c) State the central limit theorem.
- (d) Derive the expression of 'constant a' in terms of moments of X & Y, if V & W are orthogonal, where V = X+aY & W = X-aY.
- (e) List the various classifications of random processes.
- (f) Prove the statement $R_{XX}(-\tau) = R_{XX}(\tau)$.
- (g) List any two properties of cross PSD.
- (h) What is the average power in X(t), if the $R_{XX}(\tau) = 3 + 2 \exp(-4\tau^2)$?
- (i) Write the relation between $S_{XY}(\omega)$, $H(\omega) \& S_{XX}(\omega)$.
- (j) Describe the condition for stable system.

PART - B

(Answer all five units, $5 \times 10 = 50$ Marks)

- 2 (a) State and prove the Bayes theorem.
 - (b) A random variable X has the density function $f_X(x) = \frac{1}{2}u(x) \exp\left(-\frac{x}{2}\right)$, evaluate the probabilities of events $A = \{1 < X \le 3\}$, $B = \{X \le 2.5\}$.

OR

3 (a) Compute the joint and conditional probabilities based on the given data. In a box there are 100 resistors having resistances and tolerance as shown in below table. Define the three events, A as "draw a 470 Ω resistor", B as "draw a 5% tolerance resistor", and C as "draw a 100 Ω resistor".

Resistance (Ω)	Tolerance		Total
	5%	10%	Total
22	10	14	24
47	28	16	44
100	24	08	32
Total	62	38	400

(b) Define and explain the following distribution and densities with an application.

(i) Exponential

(ii) Uniform.

Contd. in page 2

www.FirstRanker.com

Code: 13A04304

www.FirstRanker.com

UNIT - II

- 4 (a) State and prove the joint density function properties.
 - (b) Identify the value of moment μ_{22} , if statistically independent random variables X and Y have moments $m_{10} = 2$, $m_{20} = 14$, $m_{02} = 12$ and $m_{11} = -6$.

OR

- 5 (a) If statistically independent random variables X and Y having respective densities $f_X(x) = 5u(x)e^{-5x}$, $f_Y(y) = 2u(y)e^{-2y}$ then derive the density function of W = X+Y.
 - (b) Two random variables X and Y have means $\overline{X} = 1$ and $\overline{Y} = 2$ variances $\sigma_X^2 = 4$ and $\sigma_Y^2 = 1$ and a correlation coefficient $\rho_{XY} = 0.4$. New random variables W and V are defined by V = -X+2Y, W = X+3Y. Find (i) The means (ii) The variances (iii) The correlations (iv) The correlation coefficient ρ_{VW} of V and W.

UNIT - III

- 6 (a) If a random process $X(t) = A \cos(wt) + B \sin(wt)$ is given, where A & B are uncorrelated, zero mean random variables having same variance σ^2 , then check X(t) is WSS or not.
 - (b) Evaluate the mean, average power and variance of random process having $R_{XX}(\tau) = 36 + 25exp(-|\tau|)$.

OR

- 7 (a) Define the terms:
 - (i) Random process.
 - (ii) Stationary random process.
 - (iii) Wide sense stationary random process.
 - (iv) Ergodic random process.
 - (b) Let X(t) be a stationary continuous random process that is differentiable.

Denoted by $\dot{X}(t) = \frac{d}{dt} (X(t))$

Determine (i) $\dot{X}(t)$ (ii) Express auto correlation function $R_{XX}(\tau)$ in terms of $R_{XX}(\tau)$.

UNIT - IV

- 8 (a) Interpret the Wiener Khintchine relation for auto power spectral density and autocorrelation of a random process.
 - (b) Find spectrum of random process whose auto correlation function $R_{XX}(\tau) = \frac{A_0^2}{2} Cos(\omega_0 \tau)$, plot correlation and its spectrum.

OR

9 Discuss the properties of auto power spectral density in detail.

UNIT - V

- 10 (a) Derive the expression for mean and mean squared value of system response.
 - (b) A stationary random process X(t) with zero mean and autocorrelation $R_{XX}(\tau) = e^{-2|\tau|}$ is applied to a system of function $H(\omega) = \frac{1}{2+i\omega}$ develop the PSD of output.

OR

- 11 (a) Write a short note on band limited, band pass and narrow band process.
 - (b) Consider a linear system as shown in figure:

$$X(t) \longrightarrow \frac{1}{6+j\omega} \longrightarrow Y(t)$$

X(t) is the input and Y(t) is the output of the system. The autocorrelation of X(t) is $R_{XX}(\tau) = 5\delta(\tau)$ determine the PSD and autocorrelation.
