B.Tech II Year I Semester (R13) Supplementary Examinations June 2017
 MATHEMATICS - III
 (Common to EEE, ECE and EIE)

Time: 3 hours
Max. Marks: 70
PART - A
(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks)
(a) Write any two properties of beta function.
(b) Compute the value of $\Gamma(-1 / 2)$.
(c) Show that $p_{1}(x)=x$.
(d) State the orthogonal property of Bessels differential equation.
(e) Check whether $\mathrm{u}(\mathrm{x}, \mathrm{y})=\sin \mathrm{x}$ coshy is harmonic function.
(f) Discuss about a Transformation $\mathrm{w}=\mathrm{z}+\mathrm{c}$, where ' c ' is complex constant.
(g) Evaluate $\int_{C} e^{z} d z$ where C is $|z|=1$.
(h) Expand $f(z)=e^{z}$ in Taylor's series about $z=1$.
(i) Find the residue at $z=1$ of the function $f(z)=\frac{z^{2}}{(z-1)(z-2)^{2}}$.
(j) State Cauchy's residue theorem.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) Prove that $\int_{0}^{\infty} x^{n-1} e^{-k x} d x=\frac{\Gamma n}{k^{n}} \quad(n>0, k>0)$
(b) Prove that $\int_{0}^{\frac{\pi}{2}} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta d \theta=\frac{\beta(m, n)}{2}$.

OR
Solve in Series the equation $x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+x y=0$
UNIT - II
4 (a) Prove that $\frac{d}{d x}\left[x J_{n}(x) J_{n+1}(x)\right]=x\left[J_{n}^{2}(x)-J_{n+1}^{2}(x)\right]$.
(b) Express $J_{5}(x)$ in terms of $J_{0}(x)$ and $J_{1}(x)$.

State and prove the Rodrigues formula of Legendre Polynomials.

UNIT - III

6 (a) State and prove the Cauchy- Riemann equations in polar form.
(b) If $f(z)=u+i v$ is Analytic function of z, find $\mathrm{f}(\mathrm{z})$ if $2 u+v=e^{2 x}[(2 x+y) \cos 2 y+(x-2 y) \sin 2 y]$

OR
7 (a) Find the bilinear Transformation which maps the points $z=\infty, i, 0$ into the points $w=-1,-i, 1$.
(b) Discuss about the Transformation $w=z^{2}$

> UNIT - IV

8 (a) Evaluate $\int_{c} \frac{\sin ^{2} z}{\left(z-\frac{\pi}{6}\right)^{3}} d z$, where c is the circle $|z|=1$.
(b) Verify cauchy's theorem for the integral of z^{3} taken over the boundary of the rectangle with vertices $-1,1,1+i,-1+i$

OR

Find the Laurent series expansion of $\frac{z^{2}-6 z-1}{(z-1)(z-3)(z+2)}$ in the region $3<|z+2|<5$

UNIT - V

(a) Evaluate $\int_{c} \frac{d z}{\left(z^{2}+4\right)^{2}}$,using residue theorem, where $\mathrm{c}:|z-i|=2$
(b) Determine the Residue of the function $f(z)=\frac{z+1}{z^{2}(z-2)}$ at each pole.

OR

11 Show that $\int_{0}^{2 \pi} \frac{\cos 2 \theta}{1-2 a \cos \theta+a^{2}}=\frac{2 \pi a^{2}}{1-a^{2}}$ where $a^{2}<1$

