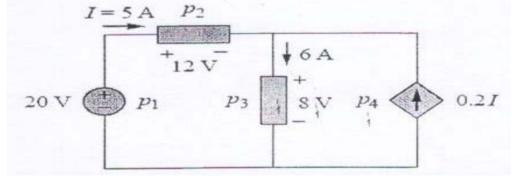


B.Tech II Year I Semester (R13) Supplementary Examinations June 2017

ELECTRICAL CIRCUITS

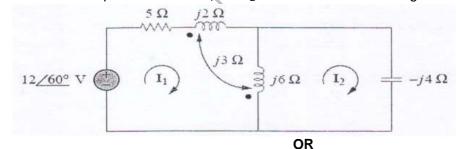
(Electrical and Electronics Engineering)


Time: 3 hours Max. Marks: 70

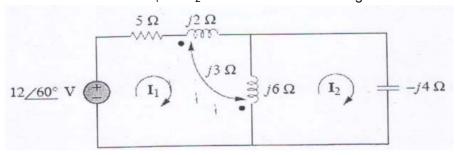
PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Calculate the power supplied and absorbed by the each element shown in below figure.


- (b) Derive the expression for the total inductance in series aiding connection.
- (c) Calculate the phase angle between $V_1 = -10\cos(wt + 50^\circ)$ and $V_2 = 12\sin(wt 100)$. State which sinusoid is leading.
- (d) Define balanced voltage, phase sequence & balanced load.
- (e) Derive the expression for bandwidth and Q-factor for a series resonant circuit.
- (f) Define duality and briefly explain about the dual networks.
- (g) State reciprocity and compensation theorems.
- (h) What is a two port network? Explain the significance of two port network.
- (i) Find the Laplace transforms for: (i) The ramp function. (ii) $e^{at} u(t)$.
- (j) What is half-wave symmetry? Explain.

PART - B

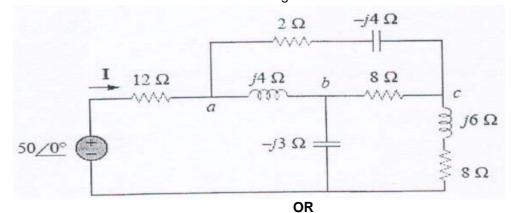

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT – I

Determine the phasor currents I_1 and I_2 for the circuit shown in figure below.

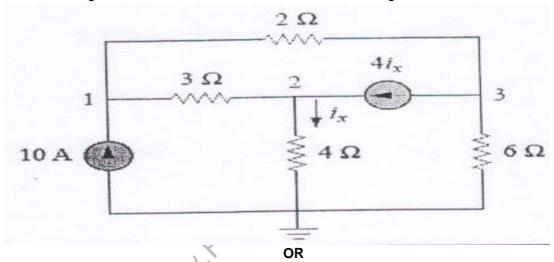
3 Determine the currents I_1 and I_2 for the circuit shown in figure below.

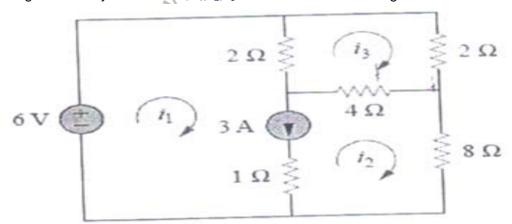
Contd. in page 2



UNIT - II

4 Determine current I in the circuit shown in figure below.

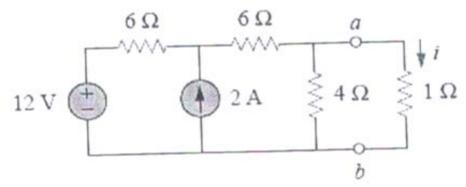

5


A Y-connected balanced 3-phase generator with an impedance of $0.4+j0.3\Omega$ per phase is connected to a Y-connected balanced load with an impedance of $24+j19\Omega$ per phase. The line joining the generator and the load has an impedance of $0.6+j0.7\Omega$ per phase. Assuming a positive sequence for the source voltages and that $V_{an}=120\, \Box\, 30^\circ$. Find: (i) Line voltages. (ii) Line currents.

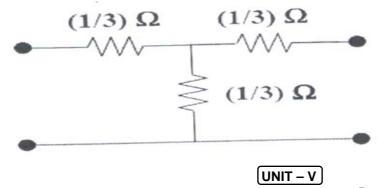
UNIT - III

Find the voltages at the three non reference nodes shown in figure below with the nodal analysis.

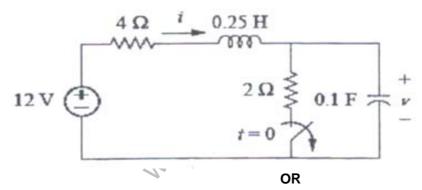
7 Using Mesh analysis determine i_1 , i_2 , i_3 for the circuit shown in figure below.



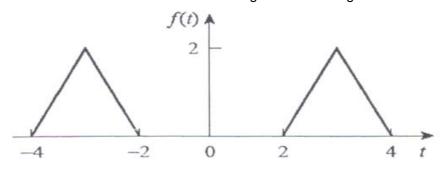
Contd. in page 3


UNIT - IV

8 Using Thevenin's circuit find I for the circuit shown in figure below.



OR


9 Determine Y-parameters for the network shown in figure below.

The switch has been closed for a long time. It is open at t = 0 as shown in figure given below. Find: (i) i(0+), v(0+). (ii) di(0+)dt, dv(0+)/dt. (iii) $i(\infty)$, $v(\infty)$.

11 Calculate the Fourier transform of the signal shown in figure below.
