B.Tech II Year I Semester (R15) Supplementary Examinations June 2017

PROBABILITY THEORY \& STOCHASTIC PROCESSES

(Electronics \& Communication Engineering)
Time: 3 hours
Max. Marks: 70

PART - A
(Compulsory Question)

1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) Write the axioms of probability.
(b) A fair die is rolled 5 times. Find the probability that "six" will show 2 times.
(c) State central limit theorem.
(d) Define correlation coefficient.
(e) A random process $X(t)=A \operatorname{Sin} \omega_{0} t$, where ω_{0} is constant and ' A ' is a uniform random variable over the interval $(0,1)$. Find whether $X(t)$ is a stationary process or not.
(f) State autocorrelation properties.
(g) Find the PSD if $R_{X X}(\tau)$ is given as $e^{-2 \lambda|\tau|}$.
(h) Calculate the noise equivalent bandwidth of the filter defined with transfer function: $H(f)=\frac{1}{1+J 2 \pi f R C}$.
(i) For a random variable with a CDF: $F_{X}(x)=\left(1-e^{-x}\right) u(x)$. Find $\operatorname{Pr}(X>5)$ and $\operatorname{Pr}(X>5 / X<7)$.
(j) State Wiener - Khintchine theorem.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - 1

2 (a) A binary symmetric channel is shown in below, Find the probability of (i) A_{1}, (ii) A_{2}, (iii) $P\left(B_{1} / A_{1}\right)$. (iv) $P\left(B_{2} / A_{2}\right)$. (v) $P\left(B_{1} / A_{2}\right)$. (vi) $P\left(B_{2} / A_{1}\right)$.

(b) List the properties of conditional density function.

OR
3 (a) Write and plot probability density function and probability distribution function of the following random variables:
(i) Uniform random variable.
(ii) Exponential random variable.
(iii) Laplace random variable.
(iv) Rayleigh random variable.
(b) A random variable X is defined as below, over the interval $(0,1)$. Find its conditional CDF of X given that $X<\frac{1}{2} ; \quad F_{X}(x)=\left\{\begin{array}{cc}0, & x<0 \\ x, & 0 \leq x<1 \\ 1, & x>1\end{array}\right.$

UNIT - II

4 (a) Find $f_{Y}(y)$ for the square law transfamation $\mathrm{Y}=\mathrm{T}(\mathrm{X})=\mathrm{C} x^{2}$ shown below.

(b) Find whether the two random variables X, and Y are statistically independent or not if the joint p.d.f is given by $f_{X Y}(x, y)=\frac{1}{12} u(x) u(y) e^{-\left(\frac{x}{4}\right)-\left(\frac{y}{3}\right)}$.

OR

5 (a) Find the p.d.f of a random variable W defined as sum of X, Y with densities shown below;

$$
\begin{aligned}
& f_{X}(x)=\frac{1}{a}[u(x)-u(x-a)] \\
& f_{Y}(y)=\frac{1}{b}[u(y)-u(y-b)] \\
& \text { With a<b }
\end{aligned}
$$

(b) An exponential random variable has a p.d.f as shown below $f_{X}(x)=b e^{-b x} u(x)$ with mean value $\frac{1}{b}$. Find its coefficient of skewness and kurtosis.

UNIT - III

6
(a) Find the mean, variance of the process $X(A)$, with $A C F$ given as $R_{X X}(\tau)=25+\frac{4}{1+6 \tau^{2}}$.
(b) Define Poisson random process and list the conditions. Write the p.d.f and find its mean and variance.

UNIT - IV

8 (a) State the properties of power density spectrum.
(b) Find power spectrum of WSS noise process $N(t)$ with autocorrelation function defined as below. $R_{N N}(\tau)=P e^{-3|\tau|}$

OR

9 (a) List the properties of cross-power density spectrum.
(b) Find the cross-correlation function for a cross-power density spectrum given below:

$$
f_{X Y}(\omega)=\frac{8}{(\alpha+j \omega)^{3}}
$$

UNIT - V

Find the output power for the LTI system shown below with input power spectral density $f_{X Y}(\omega)=\frac{N_{0}}{2}$.

For LTI system with impulse response $\mathrm{h}(\mathrm{t})$, input $\mathrm{X}(\mathrm{t})$, and output $\mathrm{Y}(\mathrm{t})$. Prove the following:
(i) $\mu_{Y}(t)=\mu_{X} H(0)$
(ii) $R_{Y Y}(\tau)=R_{X X}(\tau) * h(\tau) * h(-\tau)$
(iii) $f_{Y Y}(f)=f_{X X}(f)|H(f)|^{2}$
(iv) $f_{X Y}(f)=f_{X X}(f) H(f)$

